
2 June 2006 ACM QUEUE rants: feedback@acmqueue.com

THE RISE
and

MICHI HENNING, ZeroC

ACM QUEUE June 2006 3 more queue: www.acmqueue.com

D
epending on exactly when one starts counting, CORBA is about 10-15 years old. Dur-
ing its lifetime, CORBA has moved from being a bleeding-edge technology for early
adopters, to being a popular middleware, to being a niche technology that exists in

relative obscurity. It is instructive to examine why CORBA—despite once being heralded
as the “next-generation technology for e-commerce”—suffered this fate. CORBA’s history
is one that the computing industry has seen many times, and it seems likely that current
middleware efforts, specifi cally Web services, will reenact a similar history.

A BRIEF HISTORY
In the early ’90s, persuading programs on different machines to talk to each other was
a nightmare, especially if different hardware, operating systems, and programming
languages were involved: programmers either used sockets and wrote an entire protocol
stack themselves or their programs didn’t talk at all. (Other early middleware, such as
Sun ONC, Apollo NCS, and DCE, was tied to C and Unix and not suitable for heteroge-
neous environments.)

After a false start with CORBA 1.0, which was not interoperable and provided only
a C mapping, the OMG (Object Management Group) published CORBA 2.0 in 1997. It
provided a standardized protocol and a C++ language mapping, with a Java language
mapping following in 1998. This gave developers a tool that allowed them to build het-
erogeneous distributed applications with relative ease. CORBA rapidly gained popular-
ity and quite a number of mission-critical applications were built with the technology.
CORBA’s future looked rosy indeed.

During CORBA’s growth phase in the mid- and late ’90s, major changes affected the
computing landscape, most notably, the advent of Java and the Web. CORBA provided a
Java language mapping, but it did nothing to cooperate with the rapidly exploding Web.
Instead of waiting for CORBA to deliver a solution, companies turned to other tech-

There’s a lot we can learn from CORBA’s mistakes.

THE RISE

FALL

C
O
R
B
Aof

Component
TechnologiesFO

CU
S

4 June 2006 ACM QUEUE rants: feedback@acmqueue.com

nologies and started building their e-commerce
infrastructures based on Web browsers, HTTP,
Java, and EJB (Enterprise JavaBeans).

In addition, developers who had gained experi-
ence with CORBA found that writing any nontriv-
ial CORBA application was surprisingly difficult.
Many of the APIs were complex, inconsistent, and
downright arcane, forcing the developer to take
care of a lot of detail. In contrast, the simplicity of
component models, such as EJB, made programming a lot
simpler (if less flexible), so calls for a CORBA component
model became louder and louder. A component model
was a long time in coming, however. Work was started in
1996 on a CBOF (Common Business Object Facility), but
that effort got bogged down in political infighting and
was eventually abandoned, to be replaced by the CCM
(CORBA Component Model). A specification for CCM
was finally published in late 1999 but turned out to be
largely a nonevent:
• The specification was large and complex and much of

it had never been implemented, not even as a proof of
concept. Reading the document made it clear that CCM
was technically immature; sections of it were essentially
unimplementable or, if they were implementable, did
not provide portability.

• No commercial CORBA vendor made a commitment to
implement CCM, making it a stillborn child.

• Even if implementations had been available by the time
CCM was finally published, it was too late. The horse
had already bolted: EJB had become entrenched in the
industry to the point where another component tech-
nology had no chance of success.

The failure of CCM did little to boost the confidence
of CORBA customers, who were still stuck with their
complex technology.

Meanwhile, the industry’s need for middleware was
stronger than ever. After some experience with e-com-
merce systems that used HTTP, HTML, and CGI, it had
become clear that building distributed systems in this way
had serious limitations. Without a proper type system,
applications were reduced to parsing HTML to extract

semantics, which amounted to little more than screen-
scraping. The resulting systems turned out to be very
brittle. On the other hand, EJB had a proper type system
but was limited to Java and so not suited for many situa-
tions. There were a few flies in the CORBA ointment, too:
• Commercial CORBA implementations typically cost

several thousand dollars per development seat, plus, in
many cases, runtime royalties for each deployed copy of
an application. This limited broader acceptance of the
platform—for many potential customers, CORBA was
simply too expensive.

• The platform had a steep learning curve and was
complex and hard to use correctly, leading to long
development times and high defect rates. Early imple-
mentations also were often riddled with bugs and suf-
fered from a lack of quality documentation. Companies
found it difficult to find the expert CORBA program-
mers they needed.

Microsoft never embraced CORBA and instead chose
to push its own DCOM (Distributed Component Object
Model). This kept much of the market either sitting on
the fence or using DCOM instead, but DCOM could not
win the middleware battle either, because it worked only
on Windows. (A port of DCOM to Unix by Software AG
never gained traction.) Microsoft eventually dropped
DCOM after several failed attempts to make it scale. By
that time, the middleware market was in a very frag-
mented state, with multiple technologies competing but
none able to capture sufficient mindshare to unify distrib-
uted systems development.

Another important factor in CORBA’s decline was
XML. During the late ’90s, XML had become the new
silver bullet of the computing industry: Almost by
definition, if it was XML, it was good. After giving up on
DCOM, Microsoft wasn’t going to leave the worldwide
e-commerce market to its competitors and, rather than
fight a battle it could not win, it used XML to create an
entirely new battlefield. In late 1999, the industry saw the
publication of SOAP. Originally developed by Microsoft
and DevelopMentor, and then passed to W3C for stan-
dardization, SOAP used XML as the on-the-wire encoding
for remote procedure calls.

SOAP had serious technical shortcomings, but, as a
market strategy, it was a masterstroke. It caused further
fragmentation as numerous vendors clambered for a share
of the pie and moved their efforts away from CORBA and
toward the burgeoning Web services market. For custom-
ers, this added more uncertainty about CORBA’s viability
and, in many cases, prompted them to put investment in
the technology on hold.

C
O
R
B
A

THE RISE
 and FALL of

Component
TechnologiesFO

CU
S

ACM QUEUE June 2006 5 more queue: www.acmqueue.com

CORBA suffered another blow when the Internet bub-
ble burst in early 2002. The industry’s financial collapse
drove many software companies out of the market and
forced the survivors to refocus their efforts. The result was
significant attrition in the number of commercial CORBA
products. Before the collapse, several vendors had already
dropped or deemphasized their CORBA products and,
after the collapse, more followed. What in the mid- to
late ’90s had been a booming market with many compet-
ing products had suddenly turned into a fringe market
with far fewer vendors, customers, and investment. By
then, open source implementations of CORBA were avail-
able that partially compensated for the departure of the
commercial vendors, but this was not enough to recover
the lost mindshare and restore the market’s confidence:
CORBA was no longer the darling child of the industry.

Today, CORBA is used mostly to wire together com-
ponents that run inside companies’ networks, where
communication is protected from the outside world by a
firewall. It is also used for realtime and embedded systems
development, a sector in which CORBA is actually grow-
ing. Overall, however, CORBA’s use is in decline and it
cannot be called anything but a niche technology now.

Given that only a few years ago, CORBA was consid-
ered the cutting edge of middleware that promised to rev-
olutionize e-commerce, it is surprising to see how quickly
the technology was marginalized, and it is instructive to
examine some of the deeper reasons for the decline.

TECHNICAL ISSUES
Obviously, a number of external factors contributed to
the fall of CORBA, such as the bursting of the Internet
bubble and competition with other technologies, such as
DCOM, EJB, and Web services. One can also argue that
CORBA was a victim of industry trends and fashion. In
the computing industry, the technical excellence of a
particular technology frequently has little to do with its
success—mindshare and marketing can be more impor-
tant factors.

These arguments cannot fully account for CORBA’s
loss of popularity, however. After all, if the technology
had been as compelling as was originally envisaged, it is
unlikely that customers would have dropped it in favor of
alternatives.

Technical excellence is not a sufficient prerequisite for
success but, in the long term, it is a necessary prerequisite.
No matter how much industry hype might be pushing it,
if a technology has serious technical shortcomings, it will
eventually be abandoned. This is where we can find the
main reasons for CORBA’s failure.

COMPLEXITY
The most obvious technical problem is CORBA’s com-
plexity—specifically, the complexity of its APIs. Many of
CORBA’s APIs are far larger than necessary. For example,
CORBA’s object adapter requires more than 200 lines of
interface definitions, even though the same functionality
can be provided in about 30 lines—the other 170 lines
contribute nothing to functionality, but severely compli-
cate program interactions with the CORBA runtime.

Another problem area is the C++ language mapping.
The mapping is difficult to use and contains many pitfalls
that lead to bugs, particularly with respect to thread
safety, exception safety, and memory management. A
number of other examples of overly complex and poorly
designed APIs can be found in the CORBA specification,
such as the naming, trading, and notification services, all
of which provide APIs that are error-prone and difficult
to use. Similarly, CCM configuration is so complex that it
cannot be used productively without employing addi-
tional tool support.

Poorly designed interfaces and language mappings are
a very visible part of any technology because they are the
“coal face” of software development: They are the point
at which developers and the platform meet, and their
usability and safety have a major impact on development
time and defect count. Obviously, any technology that
suffers from endemic complexity does little to endear
itself to developers, and does even less to endear itself to
management.

Complexity also arises from architectural choices.
For example, CORBA’s IORs (interoperable object refer-
ences) are opaque entities whose contents are supposed
to remain hidden from developers. This is unfortunate for
three reasons:
• Opaque references pretty much force the use of a nam-

ing service because clients cannot create object refer-
ences without the help of an external service. This not
only complicates system development and deployment,
but also introduces redundant state into the system
(with the concomitant risk of corrupting that state) and
creates an additional failure point.

• Opaque references considerably complicate some APIs.
For example, CORBA’s interceptor APIs would be far
simpler had object references been made transparent.

• Opaque references require remote calls to compare
object identity reliably. For some applications, the over-
head of these calls is prohibitive.

Another source of complexity is the type system. For
example, CORBA’s interface definition language provides
a large set of types, among them unsigned integers,

6 June 2006 ACM QUEUE rants: feedback@acmqueue.com

fixed-point and extended-precision floating-point
numbers, bounded and unbounded sequences as
well as arrays, and an “Any” type that can store
values of arbitrary type.

Supporting these types complicates many APIs
(in particular, the interfaces for introspection and
dynamic invocation) and leads to subtle portabil-
ity problems. For example, Java does not support
unsigned types, so use of an unsigned integer in
an interface can lead to overflow problems when a Java
client communicates with a C++ server. Similarly, on plat-
forms without native support for fixed-point or double-
precision floating-point numbers, implementations must
emulate these types. Emulations are hard to implement
such that they behave identically across platforms, and
they require additional APIs. This adds further complex-
ity and is a source of hard-to-diagnose interoperability
problems.

Finally, some of the OMG’s early object services
specifications, such as the life cycle, query, concurrency
control, relationship, and collection services, were not
only complex, but also performed no useful function
whatsoever. They only added noise to an already complex
suite of specifications, confused customers, and reinforced
CORBA’s reputation of being hard to use.

INSUFFICIENT FEATURES
CORBA provides quite rich functionality, but fails to pro-
vide two core features:

Security. CORBA’s unencrypted traffic is subject to
eavesdropping and man-in-the-middle attacks, and it
requires a port to be opened in the corporate firewall
for each service. This conflicts with the reality of corpo-
rate security policies. (Incidentally, this shortcoming of
CORBA was a major factor in the rise of SOAP. Not hav-
ing to open a port in the corporate firewall and sending
everything via port 80 was seen as a major advantage,
despite the naïvete of that idea.) The OMG made several
attempts at specifying security and firewall traversal for
CORBA, but they were abandoned as a result of technical
shortcomings and lack of interest from firewall vendors.

Versioning. Deployed commercial software requires
middleware that allows for gradual upgrades of the
software in a backward-compatible way. CORBA does
not provide any such versioning mechanism (other than
versioning by derivation, which is utterly inadequate).
Instead, versioning a CORBA application generally breaks
the on-the-wire contract between client and server. This
forces all parts of a deployed application to be replaced
at once, which is typically infeasible. (This shortcoming
of CORBA was another major factor in the rise of SOAP.
The supposedly loosely coupled nature of XML was seen
as addressing the problem, despite this idea being just as
naïve as funneling all communications through port 80.)

For a commercial e-commerce infrastructure, lack of
security and versioning are quite simply showstoppers—
many potential e-commerce customers rejected CORBA
for these reasons alone.

OTHER TECHNICAL ISSUES
A number of other technical issues plague CORBA, among
them:
• Design flaws in CORBA’s interoperability protocol make

it pretty much impossible to build a high-performance
event distribution service.

• The on-the-wire encoding of CORBA contains a large
amount of redundancy, but the protocol does not sup-
port compression. This leads to poor performance over
wide-area networks.

• The specification ignores threading almost completely,
so threaded applications are inherently nonportable (yet
threading is essential for commercial applications).

• CORBA does not support asynchronous server-side
dispatch.

• No language mappings exist for C# and Visual Basic,
and CORBA has completely ignored .NET.

This list of problems is just a sample and could be
extended considerably. Such issues affect only a minor-
ity of customers, but they add to CORBA’s bad press and
limit its market.

PROCEDURAL ISSUES
Technical problems are at the heart of CORBA’s decline.
This raises the question of how it is possible for a technol-
ogy that was produced by the world’s largest software
consortium to suffer such flaws. As it turns out, the tech-
nical problems are a symptom rather than a cause.

The OMG is an organization that publishes technology
based on consensus. In essence, members vote to issue
an RFP for a specification, member companies submit
draft specifications in response, and the members vote

THE RISE
 and FALL of

C
O
R
B
A

Component
TechnologiesFO

CU
S

ACM QUEUE June 2006 7 more queue: www.acmqueue.com

on which draft to accept as a standard. In theory, this
democratic process is fair and equitable but, in practice, it
does not work:

There are no entry qualifications to participate in the
standardization process. Some contributors are experts
in the field, but, to be blunt, a large number of members
barely understand the technology they are voting on.
This repeatedly has led to the adoption of specifications
with serious technical flaws.

RFPs often call for a technology that is unproven.
The OMG membership can be divided into roughly two
groups: users of the technology and vendors of the tech-
nology. Typically, it is the users who would like to expand
CORBA to add a capability that solves a particular prob-
lem. These users, in the hope that vendors will respond
with a solution to their problem, drive issuance of an RFP.
Users, however, usually know little about the internals
of a CORBA implementation. At best, this leads to RFPs
containing requirements that are difficult to implement
or have negative performance impact. At worst, it leads
to RFPs that are little more than requests for vendors to
perform magic. Instead of standardizing best existing
practice, such RFPs attempt to innovate without prior
practical experience.

Vendors respond to RFPs even when they have known
technical flaws. This may seem surprising. After all, why
would a vendor propose a standard for something that
is known to suffer technical problems? The reason is
that vendors compete with each other for customers and
are continuously jostling for position. The promise to
respond to an RFP, even when it is clear that it contains
serious problems, is sometimes used to gain favor (and,
hopefully, contracts) with users.

Vendors have a conflict of interest when it comes
to standardization. For vendors, standardization is a
two-edged sword. On the one hand, standardization is
attractive because it makes it easier to sell the technol-
ogy. On the other hand, too much standardization is
seen as detrimental because vendors want to keep control
over the features that distinguish their product from the
competition.

Vendors sometimes attempt to block standardization
of anything that would require a change to their existing
products. This causes features that should be standardized
to remain proprietary or to be too vaguely specified to be
useful. Some vendors also neglect to distinguish stan-
dard features from proprietary ones, so customers stray
into implementation-specific territory without warning.
As a result, porting a CORBA application to a different
vendor’s implementation can be surprisingly costly;

customers often find themselves locked into a particular
product despite all the standardization.

RFPs are often answered by several draft specifica-
tions. Instead of choosing one of the competing speci-
fications, a common response of OMG members is to
ask the submitters to merge their features into a single
specification. This practice is a major cause of CORBA’s
complexity. By combining features, specifications end up
as the kitchen sink of every feature thought of by anyone
ever. This not only makes the specifications larger and
more complex than necessary, but also tends to introduce
inconsistencies: Different features that, in isolation, are
perfectly reasonable can subtly interact with each other
and cause semantic conflicts.

Major vendors occasionally stall proceedings unless
their pet features make it into the merged standard. This
causes the technology process to degenerate into political
infighting, forces foul compromises, and creates delays.
For example, the first attempt at a component model was
a victim of such infighting, as was the first attempt at a
C++ mapping. Both efforts got bogged down to the point
where they had to be abandoned and restarted later.

The OMG does not require a reference implementa-
tion for a specification to be adopted. This practice opens
the door to castle-in-the-air specifications. On several
occasions the OMG has published standards that turned
out to be partly or wholly unimplementable because
of serious technical flaws. In other cases, specifications
that could be implemented were pragmatically unusable
because they imposed unacceptable runtime overhead.
Naturally, repeated incidents of this sort are embarassing
and do little to boost customer confidence. A require-
ment for a reference implementation would have forced
submitters to implement their proposals and would have
avoided many such incidents.

Overall, the OMG’s technology adoption process
must be seen as the core reason for CORBA’s decline. The
process encourages design by committee and political
maneuvering to the point where it is difficult to achieve
technical mediocrity, let alone technical excellence. More-
over, the addition of disjointed features leads to a gradual
erosion of the architectural vision. (For example, the
architectural concept of opaque references was ignored by
a specification update in 2000. The net effect is that refer-
ences are no longer opaque, but APIs are still burdened
with the baggage of treating them as opaque.)

CORBA’s numerous technical flaws have accumulated
to a point where it is difficult to fix or add anything
without breaking something else. For example, every revi-
sion of CORBA’s interoperability protocol had to make

8 June 2006 ACM QUEUE rants: feedback@acmqueue.com

incompatible changes, and many fixes and clarifi-
cations had to be reworked several times because
of unforeseen interactions with features that were
added over time.

CAN WE LEARN FROM THE PAST?
A democratic process such as the OMG’s is
uniquely ill-suited for creating good software.
Despite the known procedural problems, however,
the industry prefers to rely on large consortia to produce
technology. Web services, the current silver bullet of
middleware, uses a process much like the OMG’s and, by
many accounts, also suffers from infighting, fragmenta-
tion, lack of architectural coherence, design by com-
mittee, and feature bloat. It seems inevitable that Web
services will enact a history quite similar to CORBA’s.

What steps should we take to end up with a better
standards process and better middleware? Seeing that
procedural failures are the root cause of technical failures,
I suggest at least the following:

Standards consortia need iron-clad rules to ensure
that they standardize existing best practice. There is no
room for innovation in standards. Throwing in “just that
extra little feature” inevitably causes unforeseen technical
problems, despite the best intentions.

No standard should be approved without a reference
implementation. This provides a first-line sanity check of
what is being standardized. (No one is brilliant enough
to look at a specification and be certain that it does not
contain hidden flaws without actually implementing it.)

No standard should be approved without having been
used to implement a few projects of realistic complex-
ity. This is necessary to weed out poor APIs: Too often,
the implementers of an API never actually use their own
interfaces, with disastrous consequences for usability.

Interestingly, the open source community has done
a much better job of adhering to these rules than have
industry consortia.

Open source innovation usually is subject to a Darwin-
ian selection process. Different developers implement
their ideas of how something should work, and others

try to use the feature and critique or improve it. That
way, the software is extensively scrutinized and tested,
and only the “fittest” version survives. (Many open
source projects formalize this process with alternating
experimental and production releases: The experimental
releases act as the test bed and evolutionary filter.)

To create quality software, the ability to say “no” is
usually far more important than the ability to say “yes.”
Open source embodies this in something that can be
called “benevolent dictatorship”: Even though many
people contribute to the overall effort, a single expert (or
a small cabal of experts) ultimately rejects or accepts each
proposed change. This preserves the original architectural
vision and stops the proverbial too many cooks from
spoiling the broth.

At the heart of these open source practices are two
essential prerequisites: cooperation and trust. Without
cooperation, the evolutionary process cannot work; and
without trust, no cabal of experts can act as an ultimate
arbiter. This, however, is precisely where software consor-
tia find their doom. It is naïve to put competing vendors
and customers into a consortium and expect them to
come up with a high-quality product—commercial reali-
ties ensure that cooperation and trust are the last things
on the participants’ minds.

Of course, software consortia contribute to an evolu-
tionary process just as much as open source projects do.
But it is the commercial marketplace that acts as the test
bed and evolutionary filter, and it is the customers who,
with their wallets, act as the (usually not so benevolent)
dictator. This amounts to little more than an industry
that throws up silver bullets and customers who leap after
them like lemmings over a cliff. Until we change this
process, the day of universal e-commerce middleware is as
far away as ever. Q

LOVE IT, HATE IT? LET US KNOW
feedback@acmqueue.com or www.acmqueue.com/forums

MICHI HENNING (michi@zeroc.com) is chief scientist of
ZeroC. From 1995 to 2002, he worked on CORBA as a mem-
ber of the OMG’s architecture board and as an ORB imple-
menter, consultant, and trainer. With Steve Vinoski, he wrote
Advanced CORBA Programming with C++ (Addison-Wesley,
1999). Since joining ZeroC, he has worked on the design
and implementation of Ice, ZeroC’s next-generation middle-
ware, and in 2003 co-authored Distributed Programming with
Ice. He holds an honors degree in computer science from the
University of Queensland, Australia.
© 2006 ACM 1542-7730/06/0600 $5.00

THE RISE
 and FALL of

C
O
R
B
A

Component
TechnologiesFO

CU
S

