
38  February 2004  QUEUE rants: feedback@acmqueue.com  QUEUE  February 2004  39  more queue: www.acmqueue.com

Building scaleable middleware for 
ultra-massive online games teaches a lesson 
we all can use: Big project, simple design.

Middle 
Massively Multiplayer 

MICHI HENNING, ZeroC
Wish is a multiplayer, online, fantasy role-playing 
game being developed by Mutable Realms.1 It differs 
from similar online games in that it allows tens of 
thousands of players to participate in a single game 
world (instead of the few hundred players supported 
by other games). Allowing such a large number of 
players requires distributing the processing load over a 
number of machines and raises the problem of choos-
ing an appropriate distribution technology.
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DISTRIBUTION REQUIREMENTS
Mutable Realms approached ZeroC for the distribution 
requirements of Wish. ZeroC decided to develop a com-
pletely new middleware instead of using existing technol-
ogy, such as CORBA (Common Object Request Broker 
Architecture).2 To understand the motivation for this 
choice, we need to examine a few of the requirements 
placed on middleware by games on the scale of Wish and 
other large-scale distributed applications.
Multi-Platform Support. The dominant platform for 
the online games market is Microsoft Windows, so the 
middleware has to support Windows. For the server 
side, Mutable Realms had early on decided to use Linux 
machines: The low cost of the platform, together with 
its reliability and rich tool support, made this an obvious 
choice. The middleware, therefore, had to support both 
Windows and Linux, with possible later support for Mac 
OS X and other Unix variants.
Multi-Language Support. Client and server software 
is written in Java, as well as a combination of C++ and 
assembly language for performance-critical functions. 
At ZeroC we used Java because some of our develop-
ment staff had little prior C++ experience. Java also offers 
advantages in terms of defect count and development 
time; in particular, garbage collection eliminates the 
memory management errors that often plague C++ devel-
opment. For administration of the game via the Web, we 
wanted to use the PHP hypertext processor. As a result, 
the game middleware had to support C++, Java, and PHP.
Transport and Protocol Support. As we developed the 
initial distribution architecture for the game, it became 
clear that we were faced with certain requirements in 
terms of the underlying transports and protocols: 
•  Players connect to ISPs via telephone lines, as well as broad-

band links. While broadband is becoming increasingly 
popular, we had decided early on that the game had to 
be playable over an ordinary modem. This meant that 
communications between clients and server had to be 
possible via low-bandwidth and high-latency links.

•  Much of the game is event driven. For example, as a player 

moves around, other players in the same area need to 
be informed of the changes in the game world around 
them. These changes can be distributed as simple events 
such as, “Player A moves to new coordinates <x,y>.”

Ideally, events are distributed via “datagrams.” If 
the occasional state update is lost, little harm is done: 
A lost event causes a particular observer’s view of the 
game world to lag behind momentarily, but that view 
becomes up-to-date again within a very short time, 
when another event is successfully delivered.

•  Events in the game often have more than one destina-
tion. For example, if a player moves within the fi eld of 
vision of fi ve other players, the same positional update 
must be sent to all fi ve observing players. We wanted 
to be able to use broadcast or multicast to support such 
scenarios.

•  Communications between clients and game servers 
must be secure. For an online subscription-based game, 
this is necessary for revenue collection, as well as to 
prevent cheating. (For example, it must be impossible 
for a player to acquire a powerful artifact by manipulat-
ing the client-side software.)

•  Clients connect to the game from LANs that are behind 
fi rewalls and use NAT (network address translation). 
The communications protocol for the game has to be 
designed in a way that accommodates NAT without 
requiring knowledge of application-specifi c information 
in order to translate addresses.

Versioning Support. We wanted to be able to update 
the game world while the game was being played—for 
example, to add new items or quests. These updates have 
to be possible without requiring every deployed client 
to be upgraded immediately—that is, client software at 
an older revision level has to continue to work with the 
updated game servers (albeit without providing access to 
newly added features). This means that the type system 
has to be fl exible enough to allow updates, such as add-
ing a fi eld to a structure or changing the signature of a 
method, without breaking deployed clients.
Ease of Use. Although a few of the Wish game develop-
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ers are distributed computing experts, the majority have 
little or no experience. This means that the middleware 
has to be easy for nonexperts to use, with simple, thread-
safe and exception-safe APIs (application programming 
interfaces).
Persistence. Much of the game requires state, such as 
the inventory for each player, to be stored in a database. 
We wanted to provide developers with a way to store and 
retrieve persistent state for application objects without 
having to concern themselves with the actual database 
and without having to design database schemas. Particu-
larly during development, as the game evolves, it is pro-
hibitively time consuming to repeatedly redesign schemas 
to accommodate changes. In addition, as we improve the 
game while being deployed, we must add new features to 
a database and remove older features from it. We wanted 
an automatic way to migrate an existing, populated data-
base to a new database schema without losing any of the 
information in the old database that was still valid.
Threading. Much of the server-side processing is I/O-
bound: Database and network access forces servers to wait 
for I/O completion. Other tasks, such as pathfinding, are 
compute-bound and can best be supported using paral-
lel algorithms. This means that the middleware has to 
be inherently threaded and offer developers sufficient 
control over threading strategies to implement parallel 
algorithms while preventing prob-
lems such as thread starvation and 
deadlock. Given the idiosyncrasies 
of threading on different operating 
systems, we also wanted a platform-
neutral threading model with a 
portable API.
Scalability. Clearly, the most serious 
challenges for the middleware are in 
the area of scalability: For an online 
game, predicting realistic bounds 
is impossible on things such as the 
total number of subscribers or the 
number of concurrent players. This 
means that we need an architecture 
that can be scaled by federating serv-
ers (that is, adding more servers) as 
demands on the software increase.

We also need fault-tolerance: For 
example, upgrading a server to a 
newer version of the game software 
has to be possible without kicking 
off every player currently using that 
server. The middleware has to be 

capable of automatically using a replica server while the 
original server is being upgraded.

Other scalability issues relate to resource management. 
For example, we did not want to be subject to hardwired 
limits, such as a maximum number of open connections 
or instantiated objects. This means that, wherever pos-
sible, the middleware has to provide automated resource 
management functions that are not subject to arbitrary 
limits and are easy to use. Simultaneously, these functions 
have to provide enough control for developers to tune 
resource management to their needs. Wherever possible, 
we wanted to be able to change resource management 
strategies without requiring recompilation.

A common scalability problem for distributed mul-
tiplayer games relates to managing distributed sets of 
objects. The game might allow players to form guilds, 
subject to certain rules: For example, a player may not be 
a member of more than one guild, or a guild may have at 
most one level-5 mage (magician). In computing terms, 
implementing such behavior boils down to performing 
membership tests on sets of distributed objects. Efficient 
implementation of such set operations requires an object 
model that does not incur the cost of a remote message 
for each test. In other words, the object identities of 
objects must be visible at all times and must have a total 
order.

In classical RPC (remote proce-
dure call) systems, object implemen-
tations reside in servers, and clients 
send remote messages to objects: 
All object behavior is on the server, 
with clients only invoking behavior, 
but not implementing it. Although 
this approach is attractive because 
it naturally extends the notion of 
a local procedure call to distrib-
uted scenarios, it causes significant 
problems:
•  Sending a remote message is 
orders of magnitude slower than 
sending a local message. One obvi-
ous way to reduce network traffic is 
to create “fat” RPCs: as much data 
as possible is sent with each call to 
better amortize the cost of going on 
the wire. The downside of fat RPCs 
is that performance considerations 
interfere with object modeling: 
While the problem domain may 
call for fine-grained interfaces with 

We wanted to be able to 
update the 
game world while 
the game was being 
played.
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many operations that exchange only a small amount of 
state, good performance requires coarse-grained inter-
faces. It is diffi cult to reconcile this design tension and 
fi nd a suitable trade-off. 

•  Many objects have behavior and can be traded among 
players. Yet, to meet the processing requirements of the 
game, we have many servers (possibly in different conti-
nents) that implement object behavior. If behavior stays 
put in the server, yet players can trade objects, before 
long, players end up with a potion whose server is in 
the United States and a scroll whose server is in Europe, 
with the potion and scroll carried in a bag that resides 
in Australia. In other words, a pure client–server model 
does not permit client-side behavior and object migra-
tion, and, therefore, destroys locality of reference.

We wanted an object model that supports both client- 
and server-side behavior so we could migrate objects and 
improve locality of reference.

DESIGNING A NEW MIDDLEWARE
Looking at our requirements, we quickly realized that 
existing middleware would be unsuitable. The cross-plat-
form and multi-language requirements suggested CORBA; 
however, a few of us had previously built a commercial 
object request broker and knew from this experience that 
CORBA could not satisfy our functionality and scalability 
requirements. Consequently, we decided to develop our 
own middleware, dubbed Ice (short for Internet Commu-
nications Engine).3 

The overriding focus in the design of Ice was on sim-
plicity: We knew from bitter experience that every feature 
is paid for in increased code and memory size, more 
complex APIs, steeper learning curve, and reduced perfor-
mance. We made every effort to fi nd the simplest possible 
abstractions (without passing the “complexity buck” to 
the developer), and we admitted features only after we 
were certain that we absolutely had to have them.
Object Model. Ice restricts its object model to a bare 
minimum: Built-in data types are limited to signed inte-
gers, fl oating-point numbers, Booleans, Unicode strings, 

and 8-bit uninterpreted (binary) bytes. User-defi ned types 
include constants, enumerations, structures, sequences, 
dictionaries, and exceptions with inheritance. Remote 
objects are modeled as interfaces with multiple inheri-
tance that contain operations with input and output 
parameters and a return value. Interfaces are passed by 
reference—that is, passing an interface passes an invoca-
tion handle via which an object can be invoked remotely.

To support client-side behavior and object migration, 
we added classes: operation invocations on a class execute 
in the client’s address space (instead of the server’s, as 
is the case for interfaces). In addition, classes can have 
state (whereas interfaces, at the object-modeling level, 
are always stateless). Classes are passed by value—that 
is, passing a class instance passes the state of the class 
instead of a handle to a remote object.

We did not attempt to pass behavior: This would 
require a virtual execution environment for objects but 
would be in confl ict with our performance and multi-
language requirements. Instead, we implemented identi-
cal behavior for a class at all its possible host locations 
(clients and servers): Rather than shipping code around, 
we provide the code wherever it is needed and ship only 
the state. To migrate an object, a process passes a class 
instance to another process and then destroys its copy 
of the instance; semantically, the effect is the same as 
migrating both state and behavior.

Architecturally, implementing object migration in 
this way is a two-edged sword because it requires all host 
locations to implement identical (as opposed to merely 
similar) behavior. This has ramifi cations for versioning: If 
we change the behavior of a class at one host location, we 
must change the behavior of that class at all other loca-
tions (or suffer inconsistent behavior). Multiple languages 
also require attention. For example, if a class instance 
passes from a C++ server to a Java client, we must provide 
C++ and Java implementations with identical behavior. 
(Obviously, this requires more effort than implementing 
the behavior just once in a single language and single 
server.)
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For environments such as Wish, where we control 
both client and server deployment, this is acceptable; for 
applications that provide only servers and rely on other 
parties to provide clients, this can be problematic because 
ensuring identical behavior of third-party class imple-
mentations is difficult.
Protocol Design. To meet our performance goals, we 
broke with established wisdom for RPC protocols in two 
ways:
•  Data is not tagged with its type on the wire and is 

encoded as compactly as possible: The encoding uses 
no padding (everything is byte-aligned) and applies a 
number of simple techniques to save bandwidth. For 
example, positive integers less than 255 require a single 
byte instead of four bytes, and strings are not NUL 
terminated. This encoding is more compact (sometimes 
by a factor of two or more, depending on the type of 
data) than CORBA’s CDR (common data representation) 
encoding. 

•  Data is always marshaled in little-endian byte order. We 
rejected a receiver-makes-it-right approach (as used by 
CORBA) because experiments showed no measurable 
performance gain. 

The protocol supports compression for better perfor-
mance over low-speed links. (Interestingly, for high-speed 
links, compression is best disabled: It takes more time 
to compress data than to send it 
uncompressed.)

The protocol encodes request 
data as a byte count followed by the 
payload as a blob. This allows the 
receiver of a message to forward it to 
a number of downstream receivers 
without the need to unmarshal and 
remarshal the message. Avoiding 
this cost was important so we could 
build efficient message switches for 
event distribution.

The protocol supports TCP/IP 
and UDP (user datagram protocol). 
For secure communications, we use 
SSL (secure sockets layer): It is freely 
available and has been extensively 
scrutinized for flaws by the security 
community.

The protocol is bidirectional, so 
a server can make a callback over 
a connection that was previously 
established by a client. This is impor-
tant for communication through 

firewalls, which usually permit outgoing connections, but 
not incoming ones. The protocol also works across NAT 
boundaries.

Classes make the protocol more complex because they 
are polymorphic: If a process sends a derived instance 
to a receiver that understands only a base type of that 
instance, the Ice runtime slices the instance to the most-
derived base type that is known to the receiver. Slicing 
requires the receiver to unmarshal data whose type is 
unknown. Further, classes can be self-referential and form 
arbitrary graphs of nodes: Given a starting node, the Ice 
runtime marshals all reachable nodes so graphs require 
the sender to perform cycle detection.

The implementation of slicing and class graphs is sur-
prisingly complex. To support unmarshaling, the protocol 
sends classes as individually encapsulated slices, each 
tagged with their type. On average (compared with struc-
tures), this requires 10 to 15 percent extra bandwidth. To 
preserve the identity relationships of nodes and to detect 
cycles, the marshaling code creates additional data struc-
tures. On average, this incurs a performance penalty of 5 
to 10 percent. Finally, for C++, we had to write a garbage 
collector to avoid memory leaks in the presence of cyclic 
class graphs, which was nontrivial. Without slicing and 
class graphs, the protocol implementation would have 
been simpler and (for classes) slightly faster.

Versioning. The object model sup-
ports multiple interfaces: Instead 
of having a single most-derived 
interface, an object can provide any 
number of interfaces. Given a han-
dle to an object, clients can request 
a specific interface at runtime using 
a safe downcast. Multiple interfaces 
permit versioning of objects without 
breaking on-the-wire compatibility: 
To create a newer version, we add 
new interfaces to existing objects. 
Already-deployed clients continue 
to work with the old interfaces, 
whereas new clients can use the 
new interfaces.

Used naively, multiple inter-
faces can lead to a versioning mess 
that forces clients to continuously 
choose the correct version. To avoid 
these problems, we designed the 
game such that clients access it 
via a small number of bootstrap 
objects for which they choose an 

We admitted 
features only after 
we were certain that 
we absolutely had to 
have them.
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interface version. Thereafter, clients acquire handles to 
other objects via their chosen interfaces on bootstrap 
objects, so the desired version is known implicitly to the 
bootstrap object. The Ice protocol provides a mechanism 
for implicit propagation of contextual information such 
as versioning, so we need not pollute all our object inter-
faces by adding an extra version parameter.

Multiple interfaces reduced development time of the 
game because, apart from versioning, they allowed us to 
use loose coupling at the type level between clients and 
servers. Instead of modifying the defi nition of an existing 
interface, we could add new features by adding new inter-
faces. This reduced the number of dependencies across 
the system and shielded developers from each others’ 
changes and the associated compilation avalanches that 
often ensue.

On the downside, multiple interfaces incur a loss of 
static type safety because interfaces are selected only at 
runtime, which makes the system more vulnerable to 
latent bugs that can escape testing. When used judi-
ciously, however, multiple interfaces are useful in combat-
ing the often excessively tight coupling of traditional RPC 
approaches.
Ease of Use. Ease of use is an overriding design goal. 
On the one hand, this means that we keep the runtime 
APIs as simple and small as possible. For example, 29 
lines of specifi cation are suffi cient to defi ne the API to 
the Ice object adapter. Despite this, the object adapter is 
fully functional and supports fl exible object implementa-
tions, such as separate servant per object, one-to-many 
mappings of servants to objects, default servants, servant 
locators, and evictors. By spending a lot of time on the 
design, we not only kept the APIs small, but also reaped 
performance gains as a result of smaller code and working 
set sizes.

On the other hand, we want language mappings that 
are simple and intuitive. Limiting ourselves to a small 
object model paid off here—fewer types mean less gener-
ated code and smaller APIs.

The C++ mapping is particularly important: From 

CORBA, we knew that a poorly designed mapping 
increases development time and defect count, and we 
wanted something safer. We settled on a mapping that is 
small (documented in 40 pages) and provides a high level 
of convenience and safety. In particular, the mapping is 
integrated with the C++ standard template library, is fully 
threadsafe, and requires no memory management. Devel-
opers never need to deallocate anything, and exceptions 
cannot cause memory leaks.

One issue we repeatedly encounter for language map-
pings is namespace collision. Each language has its own 
set of keywords, library namespaces, and so on. If the 
(language-independent) object model uses a name that 
is reserved in a particular target language, we must map 
around the resulting collision. Such collisions can be sur-
prisingly subtle and confi rmed, yet again, that API design 
(especially generic API design, such as for a language 
mapping) is diffi cult and time consuming. The choice of 
the trade-off between ease of use and functionality also 
can be contentious (such as our choice to disallow under-
scores in object-model identifi ers to create a collision-free 
namespace).
Persistence. To provide object persistence, we extended 
the object model to permit the defi nition of persistence 
attributes for objects. To the developer, making an object 
persistent consists of defi ning those attributes that should 
be stored in the database. A compiler processes these defi -
nitions and generates a runtime library that implements 
associative containers for each type of object.

Developers access persistent objects by looking them 
up in a container by their keys—if an object is not yet 
in memory, it is transparently loaded from the database. 
To update objects, developers simply assign to their 
state attributes. Objects are automatically written to the 
database by the Ice runtime. (Various policies can be used 
to control under what circumstances a physical database 
update takes place.)

This model makes database access completely trans-
parent. For circumstances in which greater control is 
required, a small API allows developers to establish 
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transaction boundaries and preserve database integrity.
To allow us to change the game without continuously 

having to migrate databases to new schemas, we devel-
oped a database transformation tool. For simple feature 
additions, we supply the tool with the old and new object 
definitions—the tool automatically generates a new data-
base schema and migrates the contents of the old data-
base to conform to the new schema. For more complex 
changes, such as changing the name of a structure field or 
changing the key type of a dictionary, the tool creates a 
default transformation script in XML that a developer can 
modify to implement the desired migration action.

This tool has been useful, although we keep thinking 
of new features that could be incorporated. As always, the 
difficulty is in knowing when to stop: The temptation to 
build better tools can easily detract from the overall proj-
ect goals. (“Inside every big program is a little program 
struggling to get out.”)
Threading. We built a portable threading API that 
provides developers with platform-independent thread-
ing and locking primitives. For remote call dispatch, we 
decided to support only a leader/followers threading 
model.4 In some situations, in which a blocking or reac-
tive model would be better suited, this decision cost us a 
little in performance, but it gained us a simpler runtime 
and APIs and reduced the potential for deadlock in nested 
RPCs.
Scalability. Ice permits redundant implementations 
of objects in different servers. The runtime automati-
cally binds to one of an object’s replicas and, if a replica 
becomes unavailable, fails over to another replica. The 
binding information for replicas is kept in configura-
tion and is dynamically acquired at runtime, so adding 
a redundant server requires only a configuration update, 
not changes in source code. This allows us to take down 
a game server for a software upgrade without having to 
kick all players using that server out of the game. The 
same mechanism also provides fault tolerance in case of 
hardware failure.

To support federating logical functions across a num-
ber of servers and to share load, we built an implemen-
tation repository that delivers binding information to 
clients at runtime. A randomizing algorithm distributes 
load across any number of servers that form a logical 
service.

We made a number of trade-offs for replication and 
load sharing. For example, not all game components can 
be upgraded without server shutdown, and a load feed-
back mechanism would provide better load sharing than 
simple randomization. Given our requirements, these 

limitations are acceptable, but, for applications with more 
stringent requirements, this might not be the case. The 
skill is in deciding when not to build something as much 
as when to build it—infrastructure makes no sense if the 
cost of developing it exceeds the savings during its use.

SIMPLE IS BETTER
Our experiences with Ice during game development have 
been very positive. Despite running a distributed system 
that involves dozens of servers and thousands of clients, 
the middleware has not been a performance bottleneck.

Our focus on simplicity during design paid off many 
times during development. When it comes to middle-
ware, simpler is better: A well-chosen and small feature 
set contributes to timely development, as well as to meet-
ing performance goals.

Finally, designing and implementing middleware is 
difficult and costly, even with many years of experience. 
If you are looking for middleware, chances are that you 
will be better off buying it than building it. Q
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