
38 February 2004 QUEUE rants: feedback@acmqueue.com QUEUE February 2004 39 more queue: www.acmqueue.com

Building scaleable middleware for
ultra-massive online games teaches a lesson
we all can use: Big project, simple design.

Middle
Massively Multiplayer

MICHI HENNING, ZeroC
Wish is a multiplayer, online, fantasy role-playing
game being developed by Mutable Realms.1 It differs
from similar online games in that it allows tens of
thousands of players to participate in a single game
world (instead of the few hundred players supported
by other games). Allowing such a large number of
players requires distributing the processing load over a
number of machines and raises the problem of choos-
ing an appropriate distribution technology.

38 February 2004 QUEUE rants: feedback@acmqueue.com QUEUE February 2004 39 more queue: www.acmqueue.com

ware
Game
DevelopmentFO

CU
S

ILLUSTRATION BY ANTHONY KYRIAZIS

40 February 2004 QUEUE rants: feedback@acmqueue.com QUEUE February 2004 41 more queue: www.acmqueue.com

DISTRIBUTION REQUIREMENTS
Mutable Realms approached ZeroC for the distribution
requirements of Wish. ZeroC decided to develop a com-
pletely new middleware instead of using existing technol-
ogy, such as CORBA (Common Object Request Broker
Architecture).2 To understand the motivation for this
choice, we need to examine a few of the requirements
placed on middleware by games on the scale of Wish and
other large-scale distributed applications.
Multi-Platform Support. The dominant platform for
the online games market is Microsoft Windows, so the
middleware has to support Windows. For the server
side, Mutable Realms had early on decided to use Linux
machines: The low cost of the platform, together with
its reliability and rich tool support, made this an obvious
choice. The middleware, therefore, had to support both
Windows and Linux, with possible later support for Mac
OS X and other Unix variants.
Multi-Language Support. Client and server software
is written in Java, as well as a combination of C++ and
assembly language for performance-critical functions.
At ZeroC we used Java because some of our develop-
ment staff had little prior C++ experience. Java also offers
advantages in terms of defect count and development
time; in particular, garbage collection eliminates the
memory management errors that often plague C++ devel-
opment. For administration of the game via the Web, we
wanted to use the PHP hypertext processor. As a result,
the game middleware had to support C++, Java, and PHP.
Transport and Protocol Support. As we developed the
initial distribution architecture for the game, it became
clear that we were faced with certain requirements in
terms of the underlying transports and protocols:
• Players connect to ISPs via telephone lines, as well as broad-

band links. While broadband is becoming increasingly
popular, we had decided early on that the game had to
be playable over an ordinary modem. This meant that
communications between clients and server had to be
possible via low-bandwidth and high-latency links.

• Much of the game is event driven. For example, as a player

moves around, other players in the same area need to
be informed of the changes in the game world around
them. These changes can be distributed as simple events
such as, “Player A moves to new coordinates <x,y>.”

Ideally, events are distributed via “datagrams.” If
the occasional state update is lost, little harm is done:
A lost event causes a particular observer’s view of the
game world to lag behind momentarily, but that view
becomes up-to-date again within a very short time,
when another event is successfully delivered.

• Events in the game often have more than one destina-
tion. For example, if a player moves within the fi eld of
vision of fi ve other players, the same positional update
must be sent to all fi ve observing players. We wanted
to be able to use broadcast or multicast to support such
scenarios.

• Communications between clients and game servers
must be secure. For an online subscription-based game,
this is necessary for revenue collection, as well as to
prevent cheating. (For example, it must be impossible
for a player to acquire a powerful artifact by manipulat-
ing the client-side software.)

• Clients connect to the game from LANs that are behind
fi rewalls and use NAT (network address translation).
The communications protocol for the game has to be
designed in a way that accommodates NAT without
requiring knowledge of application-specifi c information
in order to translate addresses.

Versioning Support. We wanted to be able to update
the game world while the game was being played—for
example, to add new items or quests. These updates have
to be possible without requiring every deployed client
to be upgraded immediately—that is, client software at
an older revision level has to continue to work with the
updated game servers (albeit without providing access to
newly added features). This means that the type system
has to be fl exible enough to allow updates, such as add-
ing a fi eld to a structure or changing the signature of a
method, without breaking deployed clients.
Ease of Use. Although a few of the Wish game develop-

Game
DevelopmentFO

CU
S

MiddlewareMiddleware
Massively Multiplayer

40 February 2004 QUEUE rants: feedback@acmqueue.com QUEUE February 2004 41 more queue: www.acmqueue.com

ers are distributed computing experts, the majority have
little or no experience. This means that the middleware
has to be easy for nonexperts to use, with simple, thread-
safe and exception-safe APIs (application programming
interfaces).
Persistence. Much of the game requires state, such as
the inventory for each player, to be stored in a database.
We wanted to provide developers with a way to store and
retrieve persistent state for application objects without
having to concern themselves with the actual database
and without having to design database schemas. Particu-
larly during development, as the game evolves, it is pro-
hibitively time consuming to repeatedly redesign schemas
to accommodate changes. In addition, as we improve the
game while being deployed, we must add new features to
a database and remove older features from it. We wanted
an automatic way to migrate an existing, populated data-
base to a new database schema without losing any of the
information in the old database that was still valid.
Threading. Much of the server-side processing is I/O-
bound: Database and network access forces servers to wait
for I/O completion. Other tasks, such as pathfinding, are
compute-bound and can best be supported using paral-
lel algorithms. This means that the middleware has to
be inherently threaded and offer developers sufficient
control over threading strategies to implement parallel
algorithms while preventing prob-
lems such as thread starvation and
deadlock. Given the idiosyncrasies
of threading on different operating
systems, we also wanted a platform-
neutral threading model with a
portable API.
Scalability. Clearly, the most serious
challenges for the middleware are in
the area of scalability: For an online
game, predicting realistic bounds
is impossible on things such as the
total number of subscribers or the
number of concurrent players. This
means that we need an architecture
that can be scaled by federating serv-
ers (that is, adding more servers) as
demands on the software increase.

We also need fault-tolerance: For
example, upgrading a server to a
newer version of the game software
has to be possible without kicking
off every player currently using that
server. The middleware has to be

capable of automatically using a replica server while the
original server is being upgraded.

Other scalability issues relate to resource management.
For example, we did not want to be subject to hardwired
limits, such as a maximum number of open connections
or instantiated objects. This means that, wherever pos-
sible, the middleware has to provide automated resource
management functions that are not subject to arbitrary
limits and are easy to use. Simultaneously, these functions
have to provide enough control for developers to tune
resource management to their needs. Wherever possible,
we wanted to be able to change resource management
strategies without requiring recompilation.

A common scalability problem for distributed mul-
tiplayer games relates to managing distributed sets of
objects. The game might allow players to form guilds,
subject to certain rules: For example, a player may not be
a member of more than one guild, or a guild may have at
most one level-5 mage (magician). In computing terms,
implementing such behavior boils down to performing
membership tests on sets of distributed objects. Efficient
implementation of such set operations requires an object
model that does not incur the cost of a remote message
for each test. In other words, the object identities of
objects must be visible at all times and must have a total
order.

In classical RPC (remote proce-
dure call) systems, object implemen-
tations reside in servers, and clients
send remote messages to objects:
All object behavior is on the server,
with clients only invoking behavior,
but not implementing it. Although
this approach is attractive because
it naturally extends the notion of
a local procedure call to distrib-
uted scenarios, it causes significant
problems:
• Sending a remote message is
orders of magnitude slower than
sending a local message. One obvi-
ous way to reduce network traffic is
to create “fat” RPCs: as much data
as possible is sent with each call to
better amortize the cost of going on
the wire. The downside of fat RPCs
is that performance considerations
interfere with object modeling:
While the problem domain may
call for fine-grained interfaces with

We wanted to be able to
update the
game world while
the game was being
played.

42 February 2004 QUEUE rants: feedback@acmqueue.com QUEUE February 2004 43 more queue: www.acmqueue.com

many operations that exchange only a small amount of
state, good performance requires coarse-grained inter-
faces. It is diffi cult to reconcile this design tension and
fi nd a suitable trade-off.

• Many objects have behavior and can be traded among
players. Yet, to meet the processing requirements of the
game, we have many servers (possibly in different conti-
nents) that implement object behavior. If behavior stays
put in the server, yet players can trade objects, before
long, players end up with a potion whose server is in
the United States and a scroll whose server is in Europe,
with the potion and scroll carried in a bag that resides
in Australia. In other words, a pure client–server model
does not permit client-side behavior and object migra-
tion, and, therefore, destroys locality of reference.

We wanted an object model that supports both client-
and server-side behavior so we could migrate objects and
improve locality of reference.

DESIGNING A NEW MIDDLEWARE
Looking at our requirements, we quickly realized that
existing middleware would be unsuitable. The cross-plat-
form and multi-language requirements suggested CORBA;
however, a few of us had previously built a commercial
object request broker and knew from this experience that
CORBA could not satisfy our functionality and scalability
requirements. Consequently, we decided to develop our
own middleware, dubbed Ice (short for Internet Commu-
nications Engine).3

The overriding focus in the design of Ice was on sim-
plicity: We knew from bitter experience that every feature
is paid for in increased code and memory size, more
complex APIs, steeper learning curve, and reduced perfor-
mance. We made every effort to fi nd the simplest possible
abstractions (without passing the “complexity buck” to
the developer), and we admitted features only after we
were certain that we absolutely had to have them.
Object Model. Ice restricts its object model to a bare
minimum: Built-in data types are limited to signed inte-
gers, fl oating-point numbers, Booleans, Unicode strings,

and 8-bit uninterpreted (binary) bytes. User-defi ned types
include constants, enumerations, structures, sequences,
dictionaries, and exceptions with inheritance. Remote
objects are modeled as interfaces with multiple inheri-
tance that contain operations with input and output
parameters and a return value. Interfaces are passed by
reference—that is, passing an interface passes an invoca-
tion handle via which an object can be invoked remotely.

To support client-side behavior and object migration,
we added classes: operation invocations on a class execute
in the client’s address space (instead of the server’s, as
is the case for interfaces). In addition, classes can have
state (whereas interfaces, at the object-modeling level,
are always stateless). Classes are passed by value—that
is, passing a class instance passes the state of the class
instead of a handle to a remote object.

We did not attempt to pass behavior: This would
require a virtual execution environment for objects but
would be in confl ict with our performance and multi-
language requirements. Instead, we implemented identi-
cal behavior for a class at all its possible host locations
(clients and servers): Rather than shipping code around,
we provide the code wherever it is needed and ship only
the state. To migrate an object, a process passes a class
instance to another process and then destroys its copy
of the instance; semantically, the effect is the same as
migrating both state and behavior.

Architecturally, implementing object migration in
this way is a two-edged sword because it requires all host
locations to implement identical (as opposed to merely
similar) behavior. This has ramifi cations for versioning: If
we change the behavior of a class at one host location, we
must change the behavior of that class at all other loca-
tions (or suffer inconsistent behavior). Multiple languages
also require attention. For example, if a class instance
passes from a C++ server to a Java client, we must provide
C++ and Java implementations with identical behavior.
(Obviously, this requires more effort than implementing
the behavior just once in a single language and single
server.)

Game
DevelopmentFO

CU
S

MiddlewareMiddleware
Massively Multiplayer

42 February 2004 QUEUE rants: feedback@acmqueue.com QUEUE February 2004 43 more queue: www.acmqueue.com

For environments such as Wish, where we control
both client and server deployment, this is acceptable; for
applications that provide only servers and rely on other
parties to provide clients, this can be problematic because
ensuring identical behavior of third-party class imple-
mentations is difficult.
Protocol Design. To meet our performance goals, we
broke with established wisdom for RPC protocols in two
ways:
• Data is not tagged with its type on the wire and is

encoded as compactly as possible: The encoding uses
no padding (everything is byte-aligned) and applies a
number of simple techniques to save bandwidth. For
example, positive integers less than 255 require a single
byte instead of four bytes, and strings are not NUL
terminated. This encoding is more compact (sometimes
by a factor of two or more, depending on the type of
data) than CORBA’s CDR (common data representation)
encoding.

• Data is always marshaled in little-endian byte order. We
rejected a receiver-makes-it-right approach (as used by
CORBA) because experiments showed no measurable
performance gain.

The protocol supports compression for better perfor-
mance over low-speed links. (Interestingly, for high-speed
links, compression is best disabled: It takes more time
to compress data than to send it
uncompressed.)

The protocol encodes request
data as a byte count followed by the
payload as a blob. This allows the
receiver of a message to forward it to
a number of downstream receivers
without the need to unmarshal and
remarshal the message. Avoiding
this cost was important so we could
build efficient message switches for
event distribution.

The protocol supports TCP/IP
and UDP (user datagram protocol).
For secure communications, we use
SSL (secure sockets layer): It is freely
available and has been extensively
scrutinized for flaws by the security
community.

The protocol is bidirectional, so
a server can make a callback over
a connection that was previously
established by a client. This is impor-
tant for communication through

firewalls, which usually permit outgoing connections, but
not incoming ones. The protocol also works across NAT
boundaries.

Classes make the protocol more complex because they
are polymorphic: If a process sends a derived instance
to a receiver that understands only a base type of that
instance, the Ice runtime slices the instance to the most-
derived base type that is known to the receiver. Slicing
requires the receiver to unmarshal data whose type is
unknown. Further, classes can be self-referential and form
arbitrary graphs of nodes: Given a starting node, the Ice
runtime marshals all reachable nodes so graphs require
the sender to perform cycle detection.

The implementation of slicing and class graphs is sur-
prisingly complex. To support unmarshaling, the protocol
sends classes as individually encapsulated slices, each
tagged with their type. On average (compared with struc-
tures), this requires 10 to 15 percent extra bandwidth. To
preserve the identity relationships of nodes and to detect
cycles, the marshaling code creates additional data struc-
tures. On average, this incurs a performance penalty of 5
to 10 percent. Finally, for C++, we had to write a garbage
collector to avoid memory leaks in the presence of cyclic
class graphs, which was nontrivial. Without slicing and
class graphs, the protocol implementation would have
been simpler and (for classes) slightly faster.

Versioning. The object model sup-
ports multiple interfaces: Instead
of having a single most-derived
interface, an object can provide any
number of interfaces. Given a han-
dle to an object, clients can request
a specific interface at runtime using
a safe downcast. Multiple interfaces
permit versioning of objects without
breaking on-the-wire compatibility:
To create a newer version, we add
new interfaces to existing objects.
Already-deployed clients continue
to work with the old interfaces,
whereas new clients can use the
new interfaces.

Used naively, multiple inter-
faces can lead to a versioning mess
that forces clients to continuously
choose the correct version. To avoid
these problems, we designed the
game such that clients access it
via a small number of bootstrap
objects for which they choose an

We admitted
features only after
we were certain that
we absolutely had to
have them.

44 February 2004 QUEUE rants: feedback@acmqueue.com QUEUE February 2004 45 more queue: www.acmqueue.com

interface version. Thereafter, clients acquire handles to
other objects via their chosen interfaces on bootstrap
objects, so the desired version is known implicitly to the
bootstrap object. The Ice protocol provides a mechanism
for implicit propagation of contextual information such
as versioning, so we need not pollute all our object inter-
faces by adding an extra version parameter.

Multiple interfaces reduced development time of the
game because, apart from versioning, they allowed us to
use loose coupling at the type level between clients and
servers. Instead of modifying the defi nition of an existing
interface, we could add new features by adding new inter-
faces. This reduced the number of dependencies across
the system and shielded developers from each others’
changes and the associated compilation avalanches that
often ensue.

On the downside, multiple interfaces incur a loss of
static type safety because interfaces are selected only at
runtime, which makes the system more vulnerable to
latent bugs that can escape testing. When used judi-
ciously, however, multiple interfaces are useful in combat-
ing the often excessively tight coupling of traditional RPC
approaches.
Ease of Use. Ease of use is an overriding design goal.
On the one hand, this means that we keep the runtime
APIs as simple and small as possible. For example, 29
lines of specifi cation are suffi cient to defi ne the API to
the Ice object adapter. Despite this, the object adapter is
fully functional and supports fl exible object implementa-
tions, such as separate servant per object, one-to-many
mappings of servants to objects, default servants, servant
locators, and evictors. By spending a lot of time on the
design, we not only kept the APIs small, but also reaped
performance gains as a result of smaller code and working
set sizes.

On the other hand, we want language mappings that
are simple and intuitive. Limiting ourselves to a small
object model paid off here—fewer types mean less gener-
ated code and smaller APIs.

The C++ mapping is particularly important: From

CORBA, we knew that a poorly designed mapping
increases development time and defect count, and we
wanted something safer. We settled on a mapping that is
small (documented in 40 pages) and provides a high level
of convenience and safety. In particular, the mapping is
integrated with the C++ standard template library, is fully
threadsafe, and requires no memory management. Devel-
opers never need to deallocate anything, and exceptions
cannot cause memory leaks.

One issue we repeatedly encounter for language map-
pings is namespace collision. Each language has its own
set of keywords, library namespaces, and so on. If the
(language-independent) object model uses a name that
is reserved in a particular target language, we must map
around the resulting collision. Such collisions can be sur-
prisingly subtle and confi rmed, yet again, that API design
(especially generic API design, such as for a language
mapping) is diffi cult and time consuming. The choice of
the trade-off between ease of use and functionality also
can be contentious (such as our choice to disallow under-
scores in object-model identifi ers to create a collision-free
namespace).
Persistence. To provide object persistence, we extended
the object model to permit the defi nition of persistence
attributes for objects. To the developer, making an object
persistent consists of defi ning those attributes that should
be stored in the database. A compiler processes these defi -
nitions and generates a runtime library that implements
associative containers for each type of object.

Developers access persistent objects by looking them
up in a container by their keys—if an object is not yet
in memory, it is transparently loaded from the database.
To update objects, developers simply assign to their
state attributes. Objects are automatically written to the
database by the Ice runtime. (Various policies can be used
to control under what circumstances a physical database
update takes place.)

This model makes database access completely trans-
parent. For circumstances in which greater control is
required, a small API allows developers to establish

Game
DevelopmentFO

CU
S

MiddlewareMiddleware
Massively Multiplayer

44 February 2004 QUEUE rants: feedback@acmqueue.com QUEUE February 2004 45 more queue: www.acmqueue.com

transaction boundaries and preserve database integrity.
To allow us to change the game without continuously

having to migrate databases to new schemas, we devel-
oped a database transformation tool. For simple feature
additions, we supply the tool with the old and new object
definitions—the tool automatically generates a new data-
base schema and migrates the contents of the old data-
base to conform to the new schema. For more complex
changes, such as changing the name of a structure field or
changing the key type of a dictionary, the tool creates a
default transformation script in XML that a developer can
modify to implement the desired migration action.

This tool has been useful, although we keep thinking
of new features that could be incorporated. As always, the
difficulty is in knowing when to stop: The temptation to
build better tools can easily detract from the overall proj-
ect goals. (“Inside every big program is a little program
struggling to get out.”)
Threading. We built a portable threading API that
provides developers with platform-independent thread-
ing and locking primitives. For remote call dispatch, we
decided to support only a leader/followers threading
model.4 In some situations, in which a blocking or reac-
tive model would be better suited, this decision cost us a
little in performance, but it gained us a simpler runtime
and APIs and reduced the potential for deadlock in nested
RPCs.
Scalability. Ice permits redundant implementations
of objects in different servers. The runtime automati-
cally binds to one of an object’s replicas and, if a replica
becomes unavailable, fails over to another replica. The
binding information for replicas is kept in configura-
tion and is dynamically acquired at runtime, so adding
a redundant server requires only a configuration update,
not changes in source code. This allows us to take down
a game server for a software upgrade without having to
kick all players using that server out of the game. The
same mechanism also provides fault tolerance in case of
hardware failure.

To support federating logical functions across a num-
ber of servers and to share load, we built an implemen-
tation repository that delivers binding information to
clients at runtime. A randomizing algorithm distributes
load across any number of servers that form a logical
service.

We made a number of trade-offs for replication and
load sharing. For example, not all game components can
be upgraded without server shutdown, and a load feed-
back mechanism would provide better load sharing than
simple randomization. Given our requirements, these

limitations are acceptable, but, for applications with more
stringent requirements, this might not be the case. The
skill is in deciding when not to build something as much
as when to build it—infrastructure makes no sense if the
cost of developing it exceeds the savings during its use.

SIMPLE IS BETTER
Our experiences with Ice during game development have
been very positive. Despite running a distributed system
that involves dozens of servers and thousands of clients,
the middleware has not been a performance bottleneck.

Our focus on simplicity during design paid off many
times during development. When it comes to middle-
ware, simpler is better: A well-chosen and small feature
set contributes to timely development, as well as to meet-
ing performance goals.

Finally, designing and implementing middleware is
difficult and costly, even with many years of experience.
If you are looking for middleware, chances are that you
will be better off buying it than building it. Q

REFERENCES
1. Mutable Realms (Wish home page): see http://

www.mutablerealms.com.
2. Henning, M., and S. Vinoski. Advanced CORBA Program-

ming with C++. Addison-Wesley, Reading: MA, 1999.
3. ZeroC. Distributed Programming with Ice: see http:

//www.zeroc.com/Ice-Manual.pdf.
4. Schmidt, D. C., O’Ryan, C., Pyarali, I., Kircher, M.,

and Buschmann, F. Leader/ Followers: A design pat-
tern for efficient multithreaded event demultiplex-
ing and dispatching. Proceedings of the 7th Pattern
Languages of Programs Conference (PLoP 2000); http:
//deuce.doc.wustl.edu/doc/pspdfs/lf.pdf.

LOVE IT, HATE IT? LET US KNOW
feedback@acmqueue.com or www.acmqueue.com/forums

MICHI HENNING (michi@zeroc.com) is chief scientist of
ZeroC. From 1995 to 2002, he worked on CORBA as a
member of the Object Management Group’s Architec-
ture Board and as an ORB implementer, consultant, and
trainer. With Steve Vinoski, he wrote Advanced CORBA
Programming with C++ (Addison-Wesley, 1999), the
definitive text in the field. Since joining ZeroC, he has
worked on the design and implementation of Ice and in
2003 coauthored “Distributed Programming with Ice” for
ZeroC. He holds an honors degree in computer science
from the University of Queensland, Australia.
© 2004 ACM 1542-7730/04/0200 $5.00

