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Terms of Service
A few months ago and quite by ac-
cident, I stumbled across a web page 
on my ISP’s website. Lo and behold, I 
found that, two months earlier, my ISP 
had started offering a better Internet 
plan than my current one for a 20% 
lower fee. Of course, this was welcome 
news. What was not so welcome was 
that the ISP had neglected to tell me 

(and thousands of other customers) about the new plan and had 
continued to charge me at the old price for inferior service. I had to 
call them to get the new plan. (And, no, they did not refund me the 
difference for the previous two months.)

Two weeks ago (with the same ISP, who shall remain nameless), 
I ran into an email problem: email to a particular destination was 
leaving my machine and was accepted by my ISP’s SMTP server, 
but was never delivered. After speaking to the sysadmin of the des-
tination machine, who checked logs and spam filters, it was clear 
that mail was lost somewhere in between my ISP and the destina-
tion machine. Time to call my ISP’s support line…

My call ended up at a call center with a voice recognition sys-
tem. Having chosen technical support, I was not connected to a per-
son, but dropped into a troubleshooting tree. I patiently answered 
several questions such as “can you browse the web?” to eventually 
find out that my ISP does not support Thunderbird. (The system 
kindly offered to help me install Outlook though…) Knowing that 
the problem was not caused by Thunderbird, I decided to pretend 
that I was using Outlook. However, the troubleshooter has no way 
to navigate back up the hierarchy (there is no voice equivalent of 
a “Back” button), so I was stuck at an inappropriate place in the 
menu system and had to hang up.

On my second call, the system recognized me from my caller ID 
and asked me whether I still had email problems. I answered “yes”, 
and was helpfully dropped back into precisely the same spot in the 
troubleshooter that I had just left.

On my third call I was savvy, disabled caller ID, and pretended 
that I was using Outlook. Soon after, the system asked me to 
answer a question with “yes” or “no.” When I answered “yes”, the 
system did not understand me and asked me to try again. I again 
answered “yes” but was not understood. After a lecture about 
background noise (there wasn’t any), I got to try a third time. 
No go—the word “yes” was suddenly no longer in the system’s 
vocabulary. Being told for the fourth time to answer “yes” or “no”, 
I tried saying “no”, but the system could not understand that either. 
At that point, I hung up in disgust.

Not one to give up easily, I decided to use email instead. How-
ever, my ISP does not publish an email address. Instead, custom-
ers must use a web interface to submit bug reports. I proceeded 
to do just that, using Safari. After I had filled in endless details, a 
problem description, and an SMTP trace log, on the final submit, 
Safari refused to execute a PHP script that was trying to run in the 
browser and trashed the submission form content. Having tried a 
second time with the same result, I changed to Internet Explorer. 
This time, when I pressed the “Submit” button, Internet Explorer 
locked up.

The following morning, I picked up the phone and cancelled all 
my contracts with the company.

You may have noticed that we recently released Ice 3.3 beta 
(with the final release to follow in May). We told you about the 
release here and in our forum. The software has lots of cool new 
features and costs exactly the same as always (nothing for GPL’d 
applications), so I encourage you to give it a try. Oh yes—you may 
have a question or bug report about Ice 3.3 beta. If so, we (the same 
engineers who wrote the code) will answer you in person. We hope 
you will enjoy both Ice 3.3 beta and being treated like a human 
being!
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New Features and Changes in Ice 3.3
Michi Henning, Chief Scientist 

Introduction
The next release of Ice (3.3) is currently in beta testing. (You can 
download Ice 3.3 beta from our download page). The final release 
will follow in May.

For this release, we have added a number of new features and 
improvements to Ice and its services. In addition, Ice 3.3 removes 
a number of APIs that have been deprecated for some time, and 
makes some changes to other APIs and language mappings. This 
article gives you an overview of what is new, what has changed, 
and what to watch out for. (Of course, this article only provides an 
overview—please consult the Ice Manual for full details.)

We invite you to provide your feedback about this release in our 
discussion forums. Your input and feedback are important to us, 
and they play a big part in shaping the next release!

New Features

Non-Blocking AMI
In releases prior to Ice 3.2, asynchronous requests could potentially 
block the calling thread. Even though, in practice, this was unlikely 
to happen, there was no guarantee that an asynchronous method in-
vocation would never block the caller. Specifically, it was possible 
for client-side TCP transport buffers to fill up, thereby suspending 
the caller inside a write system call (potentially indefinitely). 
Apart from this issue, there were other ways for an AMI request 
to block the caller: during connection establishment, the Ice run 
time performed a synchronous DNS lookup to resolve the server’s 
domain name, connection establishment itself could block, and, for 
invocations via indirect proxies, the caller was blocked until the 
client-side run time had obtained the server’s endpoint from the 
IceGrid registry.

The client could protect itself to some extent from blocking 
by using invocation timeouts, but doing this is both cumbersome 
and, of course, presents the problem of choosing an appropriate 
timeout value. It was also possible to avoid blocking the calling 
thread of an asynchronous invocation by using a worker thread that 
performed the invocation in the background. However, doing so 
required you to write quite a bit of additional code.

We thought it necessary to provide asynchronous invocations 
that cannot block because, frequently, applications use asyn-
chronous invocations in order to prevent GUI applications from 
accidentally blocking the GUI thread, thereby freezing the user 
interface.

As of this release, AMI requests can no longer block the calling 
thread. The Ice run time initially attempts to synchronously send 
AMI requests using the caller’s thread. This avoids needless con-
text switches to a background delivery thread in the vast majority 
of cases (namely, when there is no congestion or delays in DNS or 
IceGrid registry lookups). However, if any of these run-time activi-
ties would block the caller’s thread, the Ice run time instead queues 
the request. Delivery of the request is then taken care of by a back-
ground thread (for C++ and Java), or using .NET’s asynchronous 
I/O (Ice for .NET).

Of course, you can still use timeouts for asynchronous invoca-
tions. Due to the new delivery mechanisms, such timeouts are now 
more accurate because they no longer depend on the granularity set 
by Ice.MonitorConnections.

This new non-blocking behavior of asynchronous requests, 
while much more useful than the old behavior, is not completely 
transparent to your application code, however. For example, you 
might have an application that sends large numbers of AMI re-
quests to a server. If, for some reason, the server is up, but unre-
sponsive, or there are temporary network problems, the client-side 
run time will happily queue up as many requests as the application 
sends. Because each request consumes memory, your application 
can run out of memory (at least in pathological cases).

To allow your application to deal with this, AMI invocations re-
turn a Boolean result that indicates whether the request was queued 
or sent immediately. In addition, you can arrange for AMI call-
backs to be notified when a queued request is sent. This allows you 
to keep track of the number of queued requests and to limit them to 
something that your application can tolerate.

Another change in behavior is that an AMI request may now 
raise CommunicatorDestroyedException if another thread 
concurrently shuts down the Ice run time. Note that this excep-
tion is not passed to the ice_exception callback method, but 
is raised synchronously at the point you make the call. (Prior to 
Ice 3.3, it was impossible for an AMI call to raise an exception 
because all exceptions were reported via the ice_exception 
callback.)

While we were at it, we made a few other improvements to 
AMI:

It is now possible to send oneway requests using AMI. For an •	
AMI oneway request, you provide a callback object as usual. 
However, the ice_response method of the callback object 
is never called (because a oneway request does not return a 
result and nothing can be known on the client side about when 
a oneway completes in the server). However, if something 
goes wrong on the client-side in the process of sending the 
request, your callback object will be informed of the error via 
its ice_exception method.
Two new proxy methods, •	 ice_flushBatchRequests and 
ice_flushBatchRequests_async, allow you to selectively 
flush batch requests for individual proxies. The former meth-
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od blocks until all queued requests have been handed to the 
client-side transport, whereas the latter flushes batch requests 
in the background, without blocking the caller.
All callbacks for AMI requests are now made by a thread •	
that is taken from an internal thread pool, which guarantees 
that the caller’s thread will never be used to invoke ice_re-
sponse or ice_exception on a callback object. In turn, 
this allows you to hold a non-recursive lock while making an 
AMI request without the potential for deadlock if a callback 
method needs to acquire the same lock.

You can find more information in Benoit Foucher’s and Mark 
Spruiell’s article in this issue.

Improved Glacier2 Scalability
The new AMI semantics allowed us to improve the scalability of 
Glacier2. In prior releases, Glacier2 used the thread-per-connec-
tion concurrency model to isolate clients from each other, so the 
activities of one client would not adversely affect other clients. 
However, the thread-per-connection model does not scale as well 
as a thread pool. As of this release, Glacier2 uses a thread pool to 
process requests, and uses the new non-blocking AMI to isolate 
clients from each other.

Buffered delivery of requests now uses at most two threads 
overall whereas, previously, it required a separate thread for each 
client. In addition, buffered and unbuffered mode now provide 
the same degree of isolation of clients from each other; the main 
reason to use buffered mode now is to allow Glacier2 to deliver 
oneway requests in batches and to override pending requests. The 
net effect of these changes is that Glacier2 now scales better and 
works more efficiently than it did in previous releases.

Transactional Evictor
Freeze now provides a new evictor that automatically encloses all 
write operations in a transaction. The evictor guarantees ordering 
of writes, and also allows you to combine several write operations 
in a single transaction by using collocated invocations. This makes 
it easier for you to control transaction boundaries when using an 
evictor and aids data consistency if the database must be recovered 
after a crash.

IceStorm
IceStorm now provides a high-availability mode that uses master–
slave replication with automatic fail-over. Briefly, the replication 
works by deploying three or more instances of IceStorm on differ-
ent servers. Logically, all instances are identical replicas, that is, 
they know about the same topics and subscriptions. The replicated 
instances use a voting algorithm to elect a master. There is exactly 
one master at any one time and the remaining instances are slaves. 
The master processes all changes to topics and subscriptions and 
replicates these changes to the slaves.

If a slave crashes or becomes disconnected, the remaining slaves 
and the master continue to forward events. If the master crashes, 
the remaining slaves automatically elect a new master. If a net-
work failure partitions the redundant IceStorm instances into two 
or more disconnected “islands”, exactly one island elects a new 
master. (For this to work, the island containing the new master 
must include a majority of the replicated IceStorm instances, that 
is, at least  2/)1( +n  instances must still be able to communicate 
with each other in order to elect a new master.) Please see Matthew 
Newhook’s article in this issue for more information on the high-
availability features of IceStorm.

IceStorm subscriptions are now persistent by default so, if an 
IceStorm instance crashes and resumes operation again later, sub-
scribers do not need to re-create their subscription for the flow of 
events to resume.

A new retryCount quality-of-service parameter allows sub-
scribers better control over IceStorm’s behavior when delivery 
attempts fail, and IceStorm can now run in a transient mode that 
maintains no persistent state and therefore does not require a data-
base. (This mode is available only for non-replicated operation.)

Dynamic Network Interfaces
Ice servers that are configured to listen for incoming requests on all 
network interfaces now bind to INADDR_ANY instead of listening 
separately on each interface. The advantage of doing this is that, if 
a new interface (such as a wireless connection) becomes avail-
able, the server automatically uses it alongside the other interfaces. 
However, note that an object adapter does not automatically adjust 
the endpoints it publishes in its proxies. Instead, you can call a new 
method, refreshPublishedEndpoints to instruct an object 
adapter to change the endpoints it publishes in proxies to corre-
spond with the currently available network interfaces.

Support for IPv6 and Multicast
Ice 3.3 allows you to communicate over IPv6 networks. Multi-
homed hosts that are connected to both IPv6 and IPv4 networks are 
supported, so a single Ice process can use both transports simulta-
neously. You can also selectively disable either transport, to control 
which one will be used by an Ice process.

Servers can now publish multicast addresses in proxies. When a 
client invokes a oneway operation via multicast proxy, the request 
is sent to all servers that listen on the corresponding address. 
Multicast is useful mainly to allow you to build discovery services: 
by sending a multicast request, clients can reach a server without 
knowing the exact address of the server. In turn, this allows you 
to create “zero configuration” clients that dynamically obtain their 
configuration information on start-up from one of the servers in the 
multicast group. The only thing that needs to be configured for a 
client that way is the multicast address for the initial bootstrap re-
quest. The Ice distribution includes a demo that illustrates this idea.

New Features and Changes in Ice 3.3
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Simplified Application Administration
By setting a configuration property, you can instruct the Ice run 
time to create an additional object adapter that provides a single 
administrative object to clients. The object has a separate facet for 
each administrative function it provides. By default, the admin 
object has two facets: a process facet that is used by IceGrid to 
instruct a process to terminate cleanly, and a properties facet that 
allows remote inspection of the configuration settings of a process.

You can add your own facets for your own administrative pur-
poses to this object, and you can control which facets (if any) are 
to be enabled for a process.

IceBox uses this new feature by adding a facet for its service 
manager. This allows you to individually start and stop IceBox ser-
vices from a remote client without additional programming effort.

Ice for .NET
Note that, what was previously known as Ice for C# is now called 
Ice for .NET: the language independence of .NET really means 
that Ice can be used with any .NET-enabled language, so it did not 
make sense to imply one particular language (C#) in the product 
name.

slice2vb Removal
At the time we first supported Visual Basic with Ice, there were no 
freely-available compilers for either C# or Visual Basic. For that 
reason, we created a separate slice2vb compiler that generates a 
Visual Basic language mapping—without this, Visual Basic users 
would have also have required a C# compiler. However, now that 
compilers for .NET are available free of charge, we decided to 
drop slice2vb.

Of course, this does not mean that you can no longer use Visual 
Basic with Ice. (Visual Basic is supported just as much as always.) 
Instead, it means that you must use slice2cs to compile your 
Slice definitions and then compile the generated C# code with a 
C# compiler. Your Visual Basic application then links with these 
compiled stubs and skeletons. The Visual Basic demos that ship 
with Ice include a number of Visual Studio projects that show how 
to do this.

DLL Name Changes
We have removed the cs suffix from the Ice for .NET DLL as-
semblies and changed their names to align them with the nam-
ing conventions for Java and C++. For example, what used to be 
icecs.dll is now Ice.dll. Please check the release notes for a 
complete list of the changed names.

C# Mapping Improvements
The C# mapping now supports generic types for sequences and 
dictionaries. For example, you can define a sequence and a diction-
ary as follows:

// Slice 
["clr:generic:List"] sequence<int> IntSeq; 
dictionary<string, string> StringDict;

The metadata directive for the sequence causes it to be mapped 
to the C# type List<int> in the System.Collections.
Generic namespace. For dictionaries, the default mapping uses 
Dictionary<string, string>. You can enable the previ-
ous mapping to CollectionBase and DictionaryBase with a 
["clr:collection"] metadata directive.

Additional metadata directives are available that allow you to 
map sequences to the LinkedList, Queue, and Stack contain-
ers that are provided by .NET, and to map dictionaries to the 
SortedDictionary type.

Note that, as a result of this change, the Ice.Context pa-
rameter on proxy operation signatures has changed type to 
Dictionary<string string> so, if you are using contexts, 
you will need to make the corresponding change in your operation 
implementations.

The new mapping provides not only better type safety, but also 
better performance for collections of value types because it avoids 
the cost of boxing and unboxing.

Removed Features

Thread-Per-Connection Concurrency Model
Ice no longer supports the thread-per-connection concurrency 
model. The main reason for the existence of this model was asyn-
chronous method invocation. However, the new AMI mechanism 
we introduced with this release has made the thread-per-connection 
concurrency model obsolete.

If you depend on the ability to serialize requests by using thread-
per-connection, you can use the new property <threadpool>.
Serialize to get the same serialization semantics.

Java 2
As of this release, Ice no longer supports Java 2 and requires 
Java 5 or Java 6. (You can still use Ice 3.2.1 or earlier with Java 2; 
note, however, that ZeroC does not provide support for older re-
leases unless you have a support contract.)

New Features and Changes in Ice 3.3
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Deprecated APIs
We have removed a number of APIs that have been deprecated for 
some time. In most cases, if your code still depends on one of these 
APIs, changing it to use the new APIs will be trivial. Please see the 
release notes for a complete list of affected APIs.

In addition, Ice 3.3 deprecates a few APIs and properties. (These 
APIs and properties will be removed completely two minor releas-
es from now, that is, assuming 3.4 and 3.5 are the next two minor 
releases, these APIs will disappear in release 3.5.) See the release 
notes for a complete list of the deprecated APIs and properties.

Other Improvements
As usual for a non-patch release, Ice 3.3 contains quite a large 
number of fixes and improvements. Here are a few selected high-
lights. (The release notes and the CHANGES file in the distribution 
provide full detail.)

Collocation transparency now extends to exceptions: for col-•	
located invocations, the caller no longer receives the original 
exception thrown by the callee, but the same exception it 
would have received had it made the same invocation in the 
non-collocated case.
During communicator destruction, if you set the property •	
Ice.Warn.UnusedProperties, the process prints a list 
of all properties that were set but whose value was never 
accessed by the program. This makes it easier to track down 
configuration properties that contain typos.
The servant locator •	 locate and finished operations can now 
throw user exceptions.
Marshaling performance for .NET applications has been •	
improved.
C++ servants can now derive from •	 IceUtil::Thread.
Most C++ proxy factory methods now return a proxy of the •	
same type as the original, so you no longer need to down-cast 
the return value with a checkedCast or uncheckedCast.
Ice for .NET now supports signal handling on Mono.•	
Ice for .NET can now be compiled as a fully-managed ap-•	
plication by defining the MANAGED preprocessor symbol. 
Defining this symbol disables all non-verifyable code, such 
as P/Invoke calls and unsafe constructs. Note that enabling 
this symbol incurs a minor loss of functionality (for example, 
protocol compression is not supported) and it incurs a small 
penalty in marshalling performance.
Ice for Java now supports the •	 ICE_CONFIG environment 
variable.

IceBox can now recursively start and stop other IceBox •	
services.
IceBox services that share a communicator now get a sepa-•	
rate communicator instead of using the same communicator 
as IceBox itself. This means that IceBox services can have 
their own set of property settings, independent of those set for 
IceBox itself.
Object adapters now allow you to specify what proxy options •	
are embedded in the proxies that that are created by an adapter 
with the <adapter>.ProxyOptions property.
IceGrid provides an improved round-robin load balancing •	
implementation that better handles unreachable servers.

New Features and Changes in Ice 3.3
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Background I/O
Benoit Foucher, Senior Software Engineer 
Mark Spruiell, Senior Software Engineer

Introduction
The Ice run time underwent significant re-engineering for the 3.3.0 
release to address two limitations:

On the client side, oneway and Asynchronous Method Invoca-•	
tion (AMI) calls had the potential to block the calling thread.
On the server side, a program needed to use the thread-per-•	
connection concurrency model to improve reliability when 
dealing with misbehaving clients.

Although most applications were not affected by these limitations, 
the applications that were affected had to implement elaborate and 
complex schemes to work around them.

While implementing the solution to these issues, we referred 
to the project internally as “background I/O” for reasons that will 
become clear later in the article. Before we get to that, we discuss 
the limitations in more detail and give examples of the applications 
they affected. We’ll also describe how to take advantage of this 
new facility and how to use it efficiently.

Blocking Oneway and AMI Invocations
Prior to Ice 3.3, oneway, batch oneway, and AMI invocations could 
block under two circumstances. First, an invocation could block 
while the Ice run time established a connection to the server. This 
process could be delayed for a number of reasons, including:

The destination host was unreachable.•	
The server was protected by a firewall that silently drops con-•	
nection requests.
The server was too busy to accept the new connection.•	

Second, even if the connection was already established, the invoca-
tion could still block if the local transport buffer was full when Ice 
attempted to write the protocol message.

These issues had significant impact on graphical user interface 
(GUI) applications. As an example, consider the IceGrid adminis-
trative GUI: when the user clicks on the Stop button to deactivate 
a server, the program sends an AMI invocation to IceGrid from the 
Swing event dispatch thread. The user interface will not respond 
again until Ice has successfully sent the request. To avoid poten-
tially locking up the GUI, graphical applications typically make 
invocations from a separate thread; some may take even more dras-
tic measures, such as the ones presented in Matthew Newhook’s 
series of articles “Integrating Ice with GUIs” in Issues 12 to 15 of 
Connections.

These issues also impacted services that forward Ice invocations 
to clients, such as Glacier2 and IceStorm. For example, IceStorm 
forwards every message it receives from a publisher to all of 
its subscribers. If a subscriber becomes unresponsive, IceStorm 
invocations to that subscriber can block and disrupt the delivery 
of events to other subscribers. To mitigate this issue, in version 
3.2, we implemented a subscriber pool in which a group of threads 
was tasked to delivering events to subscribers; if an invocation to 
a subscriber blocked for longer than a configurable timeout period, 
another thread was added to the pool so that event delivery could 
continue.

There are situations in which blocking behavior can be advanta-
geous, such as for an application that continuously sends oneway 
or AMI invocations to a server. In this case, the application can 
use the blocking semantics for flow control: the calling thread will 
block as soon as the server fails to keep up with the flow of incom-
ing invocations.

Server-Side Thread Pool Concurrency Model
The responsibilities of the Ice server thread pool include accept-
ing new incoming connections and dispatching invocations from 
clients. As its name implies, the thread pool concurrency model 
performs its activities in a thread taken from a dedicated thread 
pool. This model consumes fewer resources and scales better than 
the thread-per-connection concurrency model, in which the Ice run 
time allocates a new thread for each incoming connection.

Prior to Ice 3.3, the server thread pool implementation was not 
immune to misbehaving clients: a client could cause a thread from 
the pool to block indefinitely unless a timeout was defined in the 
server’s endpoint configuration.

A thread could also block when using the IceSSL plugin if the 
client did not respond to the SSL handshake, or it could block if 
the server sent a large response but the client did not read from its 
end of the connection: the server’s outgoing TCP/IP buffer would 
fill up and the server thread would block until the client read more 
data.

If enough such clients were active to exhaust the thread pool, 
the server was essentially rendered inoperable. This fact could be 
exploited by malicious clients to craft denial-of-service attacks 
against Ice servers.

The thread-per-connection concurrency model does not suffer 
from these vulnerabilities because each connection is managed by 
a dedicated thread. A malicious client can interfere with the thread 
associated with its own connection to a server, but cannot disrupt 
the threads assigned to the server’s connections with other clients. 
However, this concurrency model consumes more system resourc-
es (memory and CPU) than a thread pool, which makes it unsuit-
able for server applications that need to handle a large number of 
connections.

Background I/O
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The Solution: Background I/O
In order to address the issues just described, we carefully analyzed 
the Ice run time in order to find all operations that might block 
while processing incoming and outgoing invocations, and we 
replaced blocking synchronous operations with non-blocking asyn-
chronous operations. For example, we replaced the blocking write 
that was used to send an AMI request with a non-blocking write; 
the write operation is completed in the background if necessary to 
avoid blocking the calling thread.

We also replaced blocking operations such as DNS queries, con-
nection establishment, connection validation, SSL handshaking, 
Ice locator queries, and Ice router invocations with non-blocking 
equivalents: if an operation cannot complete without blocking, Ice 
processes it in the background using a dedicated thread.

With C++ and Java, each communicator creates two threads for 
handling background I/O tasks: one thread is responsible for moni-
toring existing connections and executing I/O operations; the other 
thread performs DNS queries during connection establishment. 

With C#, the Ice run time uses the .NET Framework’s asynchro-
nous I/O facility for performing socket operations, and a dedicated 
thread is responsible for executing DNS queries.

Sounds Nice... But How Does This Affect My Ice 
Client?
To take advantage of background I/O, Ice clients must use AMI or 
batch oneway requests.

Twoway Invocations
The following invocation using twoway AMI is now guaranteed 
not to block and can be invoked safely from a GUI event dispatch 
thread:

// C++ 
class AMICallback : public AMI_Hello_sayHello 
{ 
public: 
    void ice_response() {} 
    void ice_exception( 
               const Ice::LocalException&) {} 
}; 
 
HelloPrx hello = ... 
hello->sayHello_async(new AMICallback());

The Ice run time first attempts to send this request from the call-
ing thread. If this cannot be done without blocking, the request is 
queued and sent in the background instead.

It is important to note that the AMI request is only sent in the 
background when necessary: small requests that can be sent with-
out blocking are sent by the calling thread, which avoids unneces-
sary thread context switches and improves performance.

Oneway Invocations
So what about oneway invocations? Consider the following ex-
ample:

// C++ 
HelloPrx helloOneway = hello->ice_oneway(); 
helloOneway->sayHello();

The semantics of oneway invocations have not changed in Ice 3.3; 
they are still sent synchronously and may block the calling thread. 
The reason for this is simple: the application needs to be notified if 
an error occurs when the Ice run time attempts to send the request. 
If the oneway invocation were sent asynchronously instead, there 
would be no way for the application to determine whether the 
request was sent successfully because the call would return before 
the run time sends the request. From the application’s perspective, 
the oneway invocation would appear to always succeed, even in 
the face of serious problems such as an unreachable server.

Does this mean that there is still no way to send a oneway 
request with the guarantee that it won’t block? Fortunately, the 
answer is no. We have improved AMI to add support for sending 
oneway invocations asynchronously. It is now possible to write the 
following:

// C++ 
class AMICallback : public AMI_Hello_sayHello 
{ 
public: 
    void ice_response() { assert(false); } 
    void ice_exception( 
               const Ice::LocalException&) { } 
}; 
 
HelloPrx helloOneway = hello->ice_oneway(); 
helloOneway->sayHello_async(new AMICallback());

In previous versions of Ice, attempting to invoke the sayHello 
operation asynchronously via a oneway proxy would have resulted 
in a call to the ice_exception callback method with an argument 
of Ice::TwowayOnlyException. This is no longer the case.

In the preceding example, the ice_response callback is never 
invoked by the Ice run time because the server does not send a re-
sponse for a oneway request. The run time calls ice_exception 
if it encounters an error while sending the oneway request.

Batch Oneway Invocations
A proxy configured for batch invocations allows an application to 
accumulate a number of oneway requests and send them all at once 
in a single protocol message. An invocation on a batch proxy looks 
the same as any other oneway invocation:

// C++ 
HelloPrx helloBatchOneway = 
    hello->ice_batchOneway(); 
helloBatchOneway->sayHello(); // Only queued

Background I/O
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Internally, however, the Ice run time only marshals and buffers 
the request; it does not send the batch until the application explic-
itly flushes it or until the size of the batch reaches the configured 
maximum message size that prompts the Ice run time to flush it 
automatically.

Prior to Ice 3.3, queuing an invocation with a batch oneway 
proxy could block the calling thread while the proxy established a 
connection to the server. Once the connection was established, fur-
ther invocations on the proxy were guaranteed not to block. With 
the addition of background I/O, all batch oneway invocations are 
guaranteed not to block; if a connection is not established yet, the 
first batch oneway invocation on a proxy causes the Ice run time to 
create the connection in the background.

You may be wondering what happens to the queued requests 
if Ice fails to establish the connection in the background. In this 
scenario, the next invocation on the batch proxy will raise an ex-
ception that describes the failure. That exception also serves as an 
indication that previously-queued requests may not have been sent. 
Consider the following example:

// C++ 
HelloPrx helloBatchOneway = 
	 hello->ice_batchOneway(); 
 
// If the connection is not yet established, 
// it is transparently established in the 
// background as a result of the following 
// call. 
helloBatchOneway->sayHello(); 
 
// Obtain the underlying Ice connection 
// and close it. ice_getConnection() blocks 
// until a connection is established. 
helloBatchOneway->ice_getConnection() 
    ->close(false); 
try 
{ 
	 helloBatchOneway->sayHello(); 
} 
catch(const Ice::ConnectionCloseException&) 
{ 
	 // Expected, the connection was closed 
	 // above and some previously-queued requests 
	 // may have been lost. 
} 
 
// The following call should succeed and 
// cause the connection to be re-established 
// in the background. 
helloBatchOneway->sayHello();

In this example, the code closes the connection associated with the 
proxy after it has invoked a batch oneway request, thereby caus-
ing the queued request to be lost. The next invocation on the proxy 
raises an exception to warn the application that a request might 
have been lost. Any subsequent invocation on the proxy re-estab-
lishes the connection in the background.

So, despite the non-blocking guarantee for batch oneway invo-
cations, you must not assume that they will always succeed. If an 
invocation raises an exception, it indicates that the proxy’s connec-
tion failed prior to the current invocation.

What about flushing batch requests? Earlier versions of Ice of-
fered two ways to flush batch requests:

Communicator::flushBatchRequests•	
Connection::flushBatchRequests•	

Both of these methods block until the batch requests are sent or, 
more precisely, until they are passed to the underlying transport.

Ice 3.3 adds two new proxy methods for flushing batch requests 
using synchronous or asynchronous semantics, as shown in the 
example below:

// C++ 
HelloPrx helloBatchOneway = 
	 hello->ice_batchOneway(); 
helloBatchOneway->ice_flushBatchRequests(); 
 
class AMICallback : 
	 public AMI_Object_ice_flushBatchRequests 
{ 
public: 
	 void ice_exception( 
		  const Ice::LocalException&) { } 
}; 
helloBatchOneway->ice_flushBatchRequests_async( 
	 new AMICallback());

As you might guess, the ice_flushBatchRequests method 
blocks until the batch has been sent and raises any exceptions di-
rectly to the calling thread, whereas ice_flushBatchRequests_
async never blocks and reports failures via the ice_exception 
callback.

How Does This Affect My Ice Server?
If you are currently using the thread pool concurrency model, there 
is little you need to do because your server will automatically ben-
efit from the server-side background I/O improvements.

However, there is one point that deserves attention: sending the 
response of a twoway invocation never blocks the caller. This is 
important for servers that use AMD to dispatch client invocations, 
as shown in the following example:

// C++ 
void 
HelloI::sayHello_async( 
	 const AMD_Hello_sayHelloPtr& amdCB, 
	 const Ice::Current&) 
{ 
	 amdCB->ice_response(); 
}

Background I/O
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Prior to Ice 3.3, network operations could cause ice_response 
to block, such as when the local TCP/IP buffer was full. This is no 
longer a concern with the introduction of background I/O: if send-
ing the response would cause the calling thread to block, 
ice_response returns immediately and Ice sends the message in 
the background instead.

If you were using the thread-per-connection concurrency model 
to shield your servers from misbehaving clients, you can now 
change to the thread pool concurrency model. As a matter of fact, 
we have removed the thread-per-connection concurrency model 
from Ice 3.3 because background I/O has made it unnecessary.

There was one other use-case for the thread-per-connection 
concurrency model: ensuring that a connection’s oneway requests 
are dispatched in the order received. This requirement could not be 
satisfied by the thread pool concurrency model unless you limited 
the size of the pool to one thread.

We felt this requirement was important enough to justify the 
addition of a serialization mode to the thread pool. You can enable 
serialization in a thread pool by setting its Serialize property as 
shown below:

Ice.ThreadPool.Server.Serialize=1

When enabled, messages from a given connection are processed 
sequentially in the order they are received, allowing a thread pool 
with multiple threads to provide the same ordering guarantees as 
the thread-per-connection concurrency model.

New Client Responsibilities

Flow Control
We mentioned earlier that the blocking behavior of oneway and 
AMI requests could also be an advantage for flow control: the 
client’s calling thread blocks if the server stops reading messages 
from its end of the connection.

As we discussed, regular oneway requests still block until the 
entire message is written to the underlying transport, so nothing 
has changed in this respect.

For AMI requests, however, the changes made to support back-
ground I/O have eliminated this means of flow control. Now, if a 
server cannot keep up with the flow of incoming AMI invocations 
from a client, queued requests will pile up indefinitely in the client. 
In a worst-case scenario, the client will crash after exhausting all 
available memory.

When do you need to worry about this? This is an issue only for 
applications that continuously invoke on a proxy. In such cases, it 
is preferable to use synchronous (non-AMI) invocations to prevent 
the client from sending too much data and ensure that the server 
can keep up with the incoming invocations.

However, if you still want to use AMI, you need to implement 
your own flow control using two new features in Ice 3.3. The first 
is a change to the signature of all asynchronous proxy methods: in 
prior releases these methods returned nothing, but now they return 
a Boolean that indicates whether the request was queued. For ex-
ample, here is the new signature of the sayHello_async method:

// C++ 
bool sayHello_async( 
	 const AMI_Hello_sayHelloPtr& cb);

The method returns true if the request was sent synchronously, that 
is, the entire message was accepted by the local transport buffer 
without blocking. If the method returns false, it means the Ice run 
time queued the request to avoid blocking.

The second new feature is the supplemental AMI callback inter-
face Ice::AMISentCallback, which adds the callback method 
ice_sent. The Ice run time invokes this callback once a queued 
AMI invocation has been sent. In order to receive this callback, 
your AMI callback class must implement AMISentCallback as 
shown in the following example:

// C++ 
class AMICallback : public AMI_Hello_sayHello, 
					     public Ice::AMISentCallback 
{ 
public: 
	 void ice_response() { assert(false); } 
	 void ice_sent() { } 
	 void ice_exception( 
		  const Ice::LocalException&) { } 
}; 
 
HelloPrx helloOneway = hello->ice_oneway(); 
if(helloOneway->sayHello_async(new AMICallback())) 
{ 
    // Request was sent 
} 
else 
{ 
    // Request was queued; ice_sent() will be 
    // called once request is sent. 
}

Taken together, the return value of asynchronous proxy methods 
and the ice_sent callback allow an application to count the num-
ber of currently queued invocations. If that number exceeds some 
threshold, the application can decide to wait before sending more 
requests.

AMI Exception Handling
In previous Ice versions, invoking an asynchronous proxy method 
never raised an exception. If an error occurred, the exception was 
always reported via the ice_exception method of the given AMI 
callback. Furthermore, the threading semantics of 
ice_exception were never defined; the callback could be 
invoked directly from the thread calling the asynchronous proxy 
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method, or it could be called from a thread in an Ice thread pool (or 
a per-connection thread). Unfortunately, invoking 
ice_exception from the calling thread risked a deadlock if the 
calling thread locked a non-recursive mutex and ice_exception 
needed to acquire the same mutex.

In Ice 3.3, ice_exception is guaranteed not to be called from 
the calling thread. This allows you to safely acquire mutexes and 
other resources in the implementation of ice_exception.

Another question is what happens if one thread destroys the 
communicator and a second thread, after the communicator is 
destroyed, invokes an AMI operation. Because destroying the com-
municator also destroys the thread pool, the Ice run time no longer 
has a thread from which it could call ice_exception to report 
that the communicator was destroyed. Instead, the asynchronous 
proxy method raises Ice::CommunicatorDestroyedExcep
tion, which is the only exception that an AMI request can raise 
directly to the calling thread.

In general, most applications will not need to catch this excep-
tion, provided they do not invoke on a proxy after they destroy the 
communicator. Applications that might invoke on a proxy after 
destroying the communicator should catch the exception:

// C++ 
try 
{ 
	 hello->sayHello_async(new AMICallback()); 
} 
catch(const Ice::CommunicatorDestroyedException&) 
{ 
	 // The communicator was destroyed. 
}

Conclusion
Although they look like a small improvement for most applica-
tions, the changes to AMI are a big win for other applications. 
Thanks to background I/O, it is now much simpler to make Ice 
invocations from a graphical user interface, and your Ice servers 
can now handle thousands of clients while still consuming very 
little memory.

Background I/O
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Highly Available IceStorm
Matthew Newhook, Senior Software Engineer

Introduction
A prominent new feature of Ice 3.3 is Highly-Available (HA) 
IceStorm. HA IceStorm uses replication of IceStorm servers to 
ensure that, if an IceStorm server becomes unavailable for any 
reason, subscribers and publishers do not suffer an interruption 
of service. HA IceStorm accomplishes this without backward-
incompatible interface changes and, in many cases, IceStorm 3.2 
publishers and subscribers can be used without any changes. This 
article introduces improvements to IceStorm since Ice 3.2.

High Availability
Highly-Available IceStorm uses a master–slave architecture to 
replicate data. This technique is also used in IceGrid, as described 
by Benoit Foucher in his article “Master-Slave Replication with 
Ice” in Issue 23 of Connections. I encourage you to read Benoit’s 
article if you’d like more information on this subject, as I am only 
providing a brief description here.

Consider the following interface:

// Slice 
interface Counter 
{ 
    nonmutating int getCount(); 
    void increment(); 
};

This interface contains the operation increment for changing the 
object’s state, and the operation getCount that reads the state. In 
typical master–slave architectures, state changes may only occur 
on the master, while slaves are limited to read-only access. Benoit 
recommended making this separation explicit in the interface 
design:

// Slice 
interface Counter 
{ 
    void increment(); 
};

interface CounterQuery 
{ 
    nonmutating int getCount(); 
};

Slaves implement the CounterQuery interface, and the master 
implements the Counter interface.

This is good advice when designing a replicated service from 
scratch. However, with IceStorm, we did not have this luxury. 

IceStorm is a widely-deployed service used in many production 
systems, and adopting such a change would have required all exist-
ing IceStorm applications to undergo substantial modifications. 

We opted to keep the existing interfaces intact and, therefore, 
both the master and the slaves implement the IceStorm interfaces. 
If an operation that changes state is invoked on a slave, that request 
is transparently forwarded to the master for processing. In this 
way, the caller does not need to know which replicas are slaves and 
which replica is the master.

Replicated Data
So what data does IceStorm replicate?

The set of topics,•	
the subscribers to those topics, and•	
the associated subscription quality of service (QoS) data.•	

For each state change, the master sends a notification to each con-
nected replica. IceStorm does not keep track of publishers, there-
fore this information is not replicated. Furthermore, links between 
topics are handled internally in the same way as subscriptions.

Selecting a Master
In IceGrid, the designation of master and slave replicas is config-
ured statically. Designating a new master is a manual process that 
requires direct intervention by an administrator.

If the IceGrid master becomes unavailable, state-changing op-
erations such as updating the deployment descriptors are no longer 
possible. However, deployed servers can start and stop, and clients 
can still be serviced. For IceGrid, this is a reasonable restriction, 
since the deployment information seldom changes.

With HA IceStorm, the situation is different because, if the mas-
ter could not change dynamically and were to go down, no state 
change could take place. Although it might be acceptable to disal-
low the creation and destruction of topics in this case (because the 
set of topics is fairly static), for most applications, not permitting 
new subscriptions would be completely unacceptable as the set of 
subscribers constantly changes.

The algorithm used by HA IceStorm select a new master is 
the Invitation Election Algorithm as described in “Elections in a 
Distributed Computing System” by Hector Garcia-Molina. The 
algorithm works by assigning a priority to each replica. At run 
time, replicas attempt to gather larger and larger groups of replicas 
together to form groups; the replica with the highest priority in a 
group is the leader. Replication can begin once a majority of repli-
cas has been gathered into a group.

The set of available replicas is statically configured; it is not pos-
sible to add or remove a replica without bringing down the entire 
set of replicas. 

Highly Available IceStorm
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What is not statically configured, however, is which replica is the 
master. In HA IceStorm any replica can be the master—this deci-
sion is made at run time by a process of voting. 

Divergence
Why can replication not begin until a majority of replicas are in a 
single group? Why is it that a majority is important? A majority is 
important to prevent partitioning and the subsequent divergence of 
the IceStorm database that would inevitably occur.

Consider two clients C1 and C2 and two replication groups 
G1 and G2. C1 talks with group G1, and C2 talks with group G2. 
(This situation may have arisen because of a network problem, for 
example.) In this case, replicas in G1 and G2 can no longer talk to 
each other; consequently, each group could elect its own master 
and then start replication. Consider now if conflicting state changes 
are performed by C1 and C2 (for example, C1 creates a topic foo 
in G1 and C2 destroys a topic foo in G2). This situation is known 
as divergence and, once divergence has occurred, the two databas-
es can never be reconciled. Requiring a majority of replicas before 
replication resumes prevents this problem because only the group 
containing a majority of replicas will commence replication.

However, requiring a majority implies a number of restrictions:

HA IceStorm requires at least three replicas to function. If •	
only two replicas were permitted, replication would halt if 
either of replicas were to fail.
If no majority can be formed because the network is too frag-•	
mented, replication stops.

A full system start-up occurs when no replica is currently running. 
In this situation, any one of the replicas might hold the most recent 
database state. To ensure that their databases are synchronized cor-
rectly, all replicas must be active and in the group before replica-
tion can commence. (If instead only a majority were required at 
system start-up, it would be possible for replication to begin with-
out the participation of the replica with the most recent database, 
which would obviously cause serious problems.)

IceStorm Clients
IceStorm replicas can have one of the four states listed below:

NodeStateInactive•	 : The node is inactive and awaiting an 
election.
NodeStateElection•	 : The node is electing a leader.
NodeStateReorganization•	 : The replica group is 
reorganizing.
NodeStateNormal•	 : The replica group is active and 
replicating.

For debugging purposes, the state of the replicas can be deter-
mined using the icestormadmin "replica" command (see the 
Ice Manual for details).

From the perspective of IceStorm clients, however, the replica-
tion group is either:

down: All requests to IceStorm fail.•	
inactive: All requests to IceStorm block until the node is ei-•	
ther down (in which case the request fails), or becomes active.
active: Requests are processed.•	

For any IceStorm client, the first step is to locate a topic of interest 
using the TopicManager interface. The proxy for the topic man-
ager always holds the endpoints of all replicas, either directly or 
indirectly. (Exactly how this is accomplished is defined by the HA 
IceStorm deployment; refer to the Ice Manual for more informa-
tion.) As a result, the topic manager always remains available even 
if a replica is down, as long as a majority is maintained.

Publishers
From a publisher’s point of view, replication works as follows:

A publisher locates its topic of interest using its configured •	
topic manager.
The publisher obtains a proxy with which it can publish •	
events.

By default, a publishing proxy obtained by calling 
Topic::getPublisher holds the endpoints of all replicas 
(directly or indirectly), so that publishing can continue if a replica 
fails. The publisher normally binds to a single replica and contin-
ues to use that replica to publish events unless there is a failure, or 
until active connection management (ACM) closes the connection.

For many applications, an important requirement is that events 
are delivered in the same order that they are published. (If the 
publisher sends events 0, 1, and 2, they must be received by the 
subscribers in the same order.)

Event delivery order can be guaranteed with HA IceStorm by 
suitably configuring the subscriber and publisher. The publisher 
must either:

publish events using a twoway proxy, or•	
publish events using a oneway proxy while the IceStorm •	
publish object adapter has a single thread or is configured to 
serialize requests.

The subscriber must either:

subscribe with twoway ordered QoS, or •	
use a thread pool that contains a single thread, or use a thread •	
pool that is configured to serialize requests.

In addition, the publisher must use the same replica when pub-
lishing events. This point is of critical importance: as soon as a 
publisher changes to a different replica for publishing events, 
ordering guarantees are lost. In addition, a publisher may receive 
no notification that such a change has occurred.

Highly Available IceStorm
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The following circumstances could cause the publisher to trans-
parently change replicas:

ACM has closed the connection.•	
Publishing to a replica fails, and the Ice invocation can be •	
retried. If the invocation cannot be retried, the application 
receives an exception (see the Ice Manual for full details).
The server closes the connection due to server side ACM, or •	
because the server shuts down.

There are two options if the publisher absolutely requires notifica-
tion when it changes to another replica:

Use •	 Topic::getNonReplicatedPublisher to retrieve the 
publisher proxy. This operation always returns a proxy that 
contains only the endpoints of the IceStorm replica currently 
in use.
Configure the publisher proxy not to be replicated (see the •	
deployment section in the Ice Manual for information on how 
to do this).

In either case, you can recover from a publishing failure by once 
again calling Topic::getPublisher or Topic::getNonRep
licatedPublisher. The publisher will rebind to another topic 
replica, and you will get another publisher proxy with which to 
publish events.

Subscribers
From a subscriber’s point of view, the replication works as follows:

A subscriber locates its topic of interest using its configured •	
topic manager.
The subscriber calls •	 Topic::subscribeAndGetPublisher 
on the topic.

The subscription information is automatically forwarded to all 
replicas so that events published on any replica are forwarded to 
the subscriber. The subscriber will stop receiving events under two 
circumstances:

The subscriber is unsubscribed by calling •	
Topic::unsubscribe.
The subscriber is removed as a result of a failure when de-•	
livering events. This is controlled by the retry QoS described 
below.

Configuration
There is very little to do if you are migrating from IceStorm 3.2 to 
IceStorm 3.3 and do not want to take advantage of the HA features.

For IceStorm 3.2, we added a subscriber pool to ensure that 
events were delivered to subscribers without blocking publish-
ers. With the addition of background I/O (see Benoit’s and Mark’s 
article in this issue), that pool is no longer necessary, so we re-
moved the following properties:

IceStorm.SubscriberPool.Size•	
IceStorm.SubscriberPool.SizeMax•	
IceStorm.SubscriberPool.SizeWarn•	
IceStorm.SubscriberPool.Timeout•	
IceStorm.Trace.SubscriberPool•	

The thread-per-connection concurrency model is no longer sup-
ported in Ice 3.3, so we also removed the various thread-per-con-
nection properties:

IceStorm.Publish.ThreadPerConnection•	
IceStorm.Publish.ThreadPerConnection.StackSize•	
IceStorm.TopicManager.Proxy.•	
ThreadPerConnection

IceStorm.TopicManager.ThreadPerConnection•	
IceStorm.TopicManager.ThreadPerConnection.•	
StackSize

We also removed oneway and datagram flush tracing, so the prop-
erty IceStorm.Trace.Flush no longer exists.

All IceStorm properties are prefixed with the service name; 
consequently, if your IceBox service name (the suffix de-
fined by the property that loads IceStorm, such as IceBox.
Service.<suffix>) is not “IceStorm” then you will need to 
change the names of your properties. For example, consider the 
following IceBox service configuration:

IceBox.Service.Foo=IceStormService,33:createIceSt
orm ...

In this case, the IceStorm configuration properties must use the 
Foo prefix, such as

Foo.Discard.Interval=10

We also removed the IceStorm.TopicManager.Proxy prop-
erty. This property, although undocumented, was used by 
icestormadmin and the IceStorm example programs to contact 
the IceStorm topic manager. (Your applications can use whatever 
method is most appropriate to configure the topic manager proxy.)

You will need to make significant changes to your IceStorm 
deployment in order to take advantage of replication. Your first de-
cision is whether to use IceGrid or deploy HA IceStorm manually. 
I recommend that you use IceGrid to deploy HA IceStorm: it is 
substantially simpler, and it offers the ability to add new IceStorm 
replicas without having to change the configuration of all of your 
publishers and subscribers to add the endpoints of the new replicas.

However you deploy HA IceStorm, you will also need to decide 
the following:

how many replicas you need (as previously mentioned, the •	
minimum number is three), and
whether you want •	 Topic::getPublisher to return a repli-
cated proxy.

Highly Available IceStorm

http://www.zeroc.com/download/Ice/3.3/Ice-3.3b.pdf
http://www.zeroc.com/download/Ice/3.3/Ice-3.3b.pdf


Connections
ZeroC’s Newsletter for the Ice Community

Page 14 Issue 28, April/May 2008

In the remainder of this section, I will focus on deploying HA 
IceStorm using IceGrid. If you are interested in learning more 
about manually configuring HA IceStorm, please refer to the Ice 
Manual.

Ice 3.3 beta did not ship with a pre-defined template for HA 
IceStorm, but one will be included in the final release of Ice 3.3. 
This template is shown below:

<service-template id="IceStorm-HA"> 
 
    <parameter name="instance-name" 
      default="${application}.IceStorm"/> 
    <parameter name="node-id"/> 
    <parameter name="topic-manager-endpts" 
     default="default"/> 
    <parameter name="publish-endpts" 
     default="default"/> 
    <parameter name="node-endpts" 
     default="default"/> 
    <parameter name="flush-timeout"  
     default="1000"/> 
    <parameter name="publish-rg"/> 
    <parameter name="topic-manager-rg"/> 
 
    <service name="IceStorm" 
      entry="IceStormService,33b:createIceStorm"> 
    <dbenv name="${service}"/> 
    <adapter name="${service}.TopicManager" 
      endpoints="${topic-manager-endpts}" 
      replica-group="${topic-manager-rg}"/> 
    <adapter name="${service}.Publish"  
     endpoints="${publish-endpts}" 
     replica-group="${publish-rg}"/> 
    <adapter name="${service}.Node" 
     endpoints="${node-endpts}"/> 
 
    <properties> 
       <property name="${service}.InstanceName" 
        value="${instance-name}"/> 
       <property name="${service}.NodeId"  
        value="${node-id}"/> 
       <property name="${service}.Flush.Timeout " 
        value="${flush-timeout}"/> 
    </properties> 
    </service> 
 
</service-template> 
 
<server-template id="IceStorm-HA"> 
    <parameter name="instance-name" 
     default="${application}.IceStorm"/> 
    <parameter name="node-id"/> 
    <parameter name="topic-manager-endpts" 
     default="default"/> 
    <parameter name="publish-endpts" 
     default="default"/> 
    <parameter name="node-endpts" 
     default="default"/> 
    <parameter name="flush-timeout" 
     default="1000"/> 

    <parameter name="publish-rg"/> 
    <parameter name="topic-manager-rg"/> 
 
    <icebox id="${instance-name}-${node-id}"  
      exe="icebox" 
      activation="on-demand"> 
      <service-instance template="IceStorm-HA" 
        instance-name="${instance-name}"  
        node-id="${node-id}"  
        topic-manager-endpts="${topic-manager-end 
pts}" 
        publish-endpts="${publish-endpts}" 
        node-endpts="${node-endpts}" 
        flush-timeout="${flush-timeout}" 
        publish-replica-group="${publish-rg}" 
        topic-manager-replica-group="${topic-manag 
er-rg}"/> 
    </icebox> 
</server-template>

The template requires that a replica group be defined for the topic 
manager; another replica group may also be necessary for use in 
publisher proxies. Let’s say that you decide to have three IceStorm 
replicas all deployed on the node localhost. They would be 
deployed as follows:

<application name="DemoIceStorm"> 
  <replica-group id="PublishReplicaGroup"/> 
  <replica-group id="TopicManagerReplicaGroup"> 
    <object identity="DemoIceStorm.IceStorm/TopicM 
anager" 
      type="::IceStorm::TopicManager"/> 
  </replica-group> 
 
  <node name="localhost"> 
    <server-instance template="IceStorm-HA" 
     node-id="1" 
     publish-rg="PublishReplicaGroup" 
     topic-manager-rg="TopicManagerReplicaGroup"/> 
    <server-instance template="IceStorm-HA" 
     node-id="2" 
     publish-rg="PublishReplicaGroup" 
     topic-manager-rg="TopicManagerReplicaGroup"/> 
    <server-instance template="IceStorm-HA" 
     node-id="3" 
     publish-rg="PublishReplicaGroup" 
     topic-manager-rg="TopicManagerReplicaGroup"/> 
  </node> 
</application>

If no publish replica group is defined, the proxy returned by 
Topic::getPublisher will not be a replicated proxy. In this 
case, the deployment would change to the following:

<application name="DemoIceStorm"> 
  <replica-group id="TopicManagerReplicaGroup"> 
    <object identity="DemoIceStorm.IceStorm/TopicM 
anager" 
     type="::IceStorm::TopicManager"/> 
  </replica-group> 
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  <node name="localhost"> 
   <server-instance template="IceStorm-HA" 
    node-id="1" 
    publish-rg="" 
    topic-manager-rg="TopicManagerReplicaGroup"/> 
   <server-instance template="IceStorm-HA" 
    node-id="2" 
    publish-rg="" 
    topic-manager-rg="TopicManagerReplicaGroup"/> 
    <server-instance template="IceStorm-HA" 
     node-id="3" 
     publish-rg="" 
     topic-manager-rg="TopicManagerReplicaGroup"/> 
  </node> 
</application>

Failures
Some of the HA IceStorm failure scenarios introduce corner cases 
that your applications may need to deal with. 

It is possible for a request to result in an 
Ice::UnknownException. This can happen, for example, if a 
replica loses the majority of nodes (and thus the node progresses 
to the inactive state) during request processing. In this case, the 
result of the request is indeterminate (the request may or may not 
have succeeded) and the IceStorm client cannot draw conclusions 
about the status of the request. In this case, your client should retry 
the request and deal with the potential for failure. For example, 
consider:

// C++ 
TopicPrx topic = ...; 
Ice::ObjectPrx sub = ...; 
IceStorm::QoS qos; 
topic->subscribeAndGetPublisher(qos, sub);

The call to subscribeAndGetPublisher may fail with an 
Ice::UnknownException. In this case, the subscription may or 
may not have failed. Therefore, you should write the code as 
follows:

// C++ 
IceStorm::QoS qos; 
while(true) 
{ 
	 try 
	 { 
		  topic->subscribeAndGetPublisher(qos, sub); 
	 } 
	 catch(const Ice::UnknownException&) 
	 { 
		  continue; 
	 } 
	 catch(const IceStorm::AlreadySubscribed&) 
	 { 
		  // Expected. 
	 } 
	 break; 
}

Persistent Subscribers
Publish–subscribe systems such as IceStorm have two kinds of 
clients (in the sense of “customer”, not in the sense of “Ice client”): 
publishers and subscribers. Publishers publish information on a 
topic, and subscribers consume that information. There are, in gen-
eral, two possible models by which connected parties of such sys-
tems can interact. The first is known as the push model, in which 
publishers send (or “push”) events to a topic, and the topic pushes 
events to subscribers. The second is known as the pull model, in 
which topics invoke operations on publishers to retrieve (or “pull”) 
events, and subscribers pull events from the topic.

In the push model, publishers are active because they send 
events to topics by invoking operations on the topics, that is, 
publishers act in the role of Ice clients. Subscribers, in contrast, are 
passive because topics deliver events to subscribers by invoking 
operations on the subscribers, that is, subscribers act in the role of 
Ice servers. With the pull model, the situation is reversed: publish-
ers are passive, since topics invoke operations on publishers to 
retrieve new events (so publishers are servers); correspondingly, 
subscribers are active because they invoke operations on topics to 
retrieve new events (so subscribers are clients).

The only model that IceStorm supports is the push model. The 
pull model (which essentially amounts to polling), is resource-in-
tensive and would be much more complex to implement (both for  
IceStorm itself and for your publishers and subscribers). 

However, why does it matter to think in terms of clients and 
servers with respect to IceStorm? The distinction becomes im-
portant when we consider a crash of IceStorm. A publisher, being 
a client, discovers the crash as soon as it publishes a new event 
because the push operation raises an exception. On the other hand, 
subscribers, which act in the server role, simply no longer receive 
events. In other words, a publisher can easily identify a crashed 
IceStorm, but a subscriber does not know why the flow of events 
has stopped—it might be because publishers are currently not 
sending any events, or because IceStorm has crashed. (To a 
subscriber, a dead IceStorm is indistinguishable from a very slow 
IceStorm.)

In previous versions of IceStorm, topics and information about 
topic links were persistent, but subscriber information was not 
persistent. If IceStorm crashed or the network connection between 
IceStorm and a subscriber was interrupted even temporarily, the 
subscriber would simply stop receiving events and there was no 
simple way for a subscriber to tell that this had occurred.

Subscribers can work around this problem, but the techniques 
to do so are by no means straightforward. For example, one op-
tion would be for each subscriber to ping its associated IceStorm 
topic on a regular basis. If a ping fails, the subscriber marks itself 
as disconnected and starts a timer to re-subscribe. However, this 
approach has two problems.The first problem is that a ping call 
from the subscriber to the IceStorm topic will need to create a new 
connection, but the ability of the subscriber to connect with IceS-
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torm does not imply that IceStorm can connect with the subscriber 
(for example, due to firewall restrictions). From IceStorm’s point 
of view, the subscriber can be unreachable and therefore remain 
disconnected.

While you might think this scenario unlikely, there is a more 
serious problem: IceStorm could crash and restart without the 
subscriber noticing. For example, suppose the subscriber pings an 
IceStorm topic every ten seconds. Also suppose that the subscriber 
pings IceStorm at time t and, at time t+2, IceStorm crashes. Then, 
at time t+4, IceStorm restarts and, at time t+10, the subscriber 
pings IceStorm again with no problems. However, because 
IceStorm was restarted, the subscription is lost.

Another option would be for the subscriber to ping the per-sub-
scriber publisher object returned by Topic::subscribeAndGet
Publisher. Unlike the previous approach, this one is more work-
able because the ping would fail if IceStorm were to remove the 
subscription for some reason. Another possible option would be to 
call Topic::subscribeAndGetPublisher on a regular basis: if 
the subscriber is disconnected, it will be re-subscribed by the call.

None of these workarounds are necessary with IceStorm 3.3 
because subscriptions are now stored persistently. Restarting 
IceStorm does not destroy the subscriber record, and event delivery 
to all existing subscribers automatically resumes once IceStorm 
is restarted. (I’ll discuss how IceStorm deals with subscribers that 
forget to unsubscribe shortly.)

However, this new persistence feature may require some chang-
es to your application: subscribers that use fixed identities while 
assuming that the set of subscribers is cleared on an IceStorm 
restart may get an unexpected AlreadySubscribed exception 
when calling Topic::subscribeAndGetPublisher.

Retry QoS
IceStorm 3.3 adds a new quality-of-service parameter named 
retryCount. This QoS allows a subscriber to influence 
IceStorm’s retry behavior when it attempts to deliver an event and 
the attempt fails.

There are two types of failure:

Hard failure: •	 Ice::ObjectNotExistException and 
Ice::NotRegisteredException. In the event of hard 
failure, IceStorm immediately removes subscribers (or linked 
topics).
Soft failure: This is any other kind of failure, such as failure •	
to reach the subscriber because its host is down or because no 
process is listening at the subscriber’s endpoint.

In the event of a soft failure, IceStorm suspends event delivery for 
the time period specified by the IceStorm.Discard.Interval 
property (which defaults to one minute). After a soft failure, 
IceStorm discards all events for the subscriber for the specified 
time and resumes event delivery once the interval expires.

Each successive soft failure decrements the configured retry 
count. IceStorm removes a subscriber once the retry count reaches 
zero. (A retry count of −1 means retry forever.) Linked topics 
always have a retry count of −1; the default value of the 
retryCount parameter is 0.

When using a retry count of −1, it is imperative that you con-
figure your applications correctly; otherwise, IceStorm may never 
remove stale subscriptions because it will continue to attempt 
delivery until it encounters a hard error. However, hard errors 
are only possible if IceStorm can actually reach the subscriber 
or an agent of the subscriber (such as IceGrid). (If the subscriber 
is down, IceStorm only receives a soft failure.) Therefore, if you 
use a retry count of −1, each subscriber should use IceGrid or 
run at a fixed endpoint. In addition, if you expect the subscriber 
to continue to receive events after it restarts, you must use the 
same identity for the subscriber on each restart. (You can rely on 
Topic::subscribeAndGetPublisher throwing 
AlreadySubscribed if the subscriber is already subscribed.)

Oneway Delivery Mode
There has been a subtle change in the oneway message delivery 
mode for subscribers that may affect some users of IceStorm. As 
you may recall, the message delivery semantics are determined by 
the proxy that the subscriber passes to IceStorm.

The following example uses twoway delivery because proxies 
are twoway by default:

IceStorm::TopicPrx topic = ...; 
ObjectAdapterPtr adapter = ...; 
ObjectPrx subscriber = adapter->addWithUUID( 
	 new HelloI); 
IceStorm::QoS qos; 
topic->subscribeAndGetPublisher(qos, o);

However, the delivery mode becomes oneway if the subscriber 
supplies a oneway proxy:

topic->subscribeAndGetPublisher( 
	 qos, o->ice_oneway());

In IceStorm 3.2, all outgoing events were placed into a queue. 
Workers from the subscriber pool flushed subscribers on a round-
robin basis. When IceStorm flushed a oneway subscriber, it sent 
the message using a oneway proxy if the queue contained only one 
event; otherwise IceStorm sent all queued events using a batch 
oneway proxy and then immediately flushed the connection.

Highly Available IceStorm
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Using a batch proxy increases throughput because it results in a 
smaller protocol message, makes better use of protocol compres-
sion, and results in fewer context switches and system calls.

However, what happens if IceStorm is flooded with events? The 
result is that the subscriber pool worker threads spend more and 
more time flushing events, causing the latency of individual events 
to increase while improving overall event throughput.

Since this is the purpose of the oneway batch mode, we elected 
to change the semantics of the oneway delivery mode in 
IceStorm 3.3 to better match the intended semantics. In a nutshell:

Applications that care more about throughput than latency •	
should use batch mode.
Applications that care more about lower latency than through-•	
put should use oneway or twoway/ordered delivery.

Latency here refers to individual event latency. That is, what goes 
up by using batch delivery is the variance of the wait time between 
events for individual subscribers. However, because throughput is 
higher, overall latency across all subscribers is reduced.

The upshot of these changes is that applications that used 
oneway delivery mode with IceStorm 3.2 and rapidly sent a large 
numbers of messages will see decreased throughput but lower 
latency.

Database
HA IceStorm introduced a number of changes to its database 
schema, along with a change from Berkeley DB 4.5 to 4.6. To use 
existing IceStorm 3.2 databases with IceStorm 3.3, you must first 
update the databases with the icestormmigrate tool. The up-
grade instructions are provided in the release notes that accompany 
the distribution, so please review them for migration instructions.

If you want to migrate to a replicated IceStorm, first migrate the 
database as described in the release notes, and then copy the result-
ing database into the database directory of a single replica. (The 
other replicas should have no database at all.) After doing this, 
all other IceStorm replicas replicate the database when you start 
IceStorm for the first time.

Conclusion
The addition of high availability features to IceGrid in Ice 3.2 was 
extremely important to those users that use Ice in environments 
that require fault tolerance. In this release, we have continued to 
improve resilience of Ice applications to failures by making IceS-
torm fault tolerant as well. I hope that you take advantage of this in 
your deployments: failure should not be an option!

Highly Available IceStorm
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FAQ Corner

FAQ Corner

In each issue of our newsletter, we present a few frequently-asked 
questions about Ice. The questions and answers are taken from 
our support forum at http://www.zeroc.com/forums and deal with 
specific problems that developers tend to encounter, and for which 
the answer may not be readily apparent from reading the documen-
tation. We hope that you will find the hints and explanations in this 
section useful.

Q: Why is it important to use the idempotent Slice 
keyword?

An idempotent operation is an operation that, if invoked twice in 
succession with identical parameter values, has the same effect as 
a single invocation. For example, the statement x=1 is idempotent 
whereas the statement x++ is not.

Ice allows you to optionally mark a Slice operation as 
idempotent. For example:

// Slice 
interface Example 
{ 
    idempotent void setVal(int val); 
	 void incVal(); 
};

The idempotent keyword informs the Ice run time that a single 
invocation of the setVal operation has the same effect as two 
successive invocations of setVal with the same parameter value. 
Obviously, incVal (which adds one to the current value) is not 
idempotent.

So, why would the Ice run time care about this? The answer 
is that Ice provides at-most-once semantics: it guarantees that, if 
a client makes a single operation invocation, the invocation will 
either be delivered to the server exactly once or not at all. This may 
seem self-evident. However, it implies that under no circumstances 
will a single invocation by a client ever result in two invocations in 
the server.

The at-most-once guarantee is important: if Ice were not to 
provide this guarantee, a single invocation of incVal by a client 
could result in two invocations of the operation in the server, with 
the net effect that the value would be incremented twice instead of 
once.

As long as everything works well, the Ice run time does not care 
if an operation is idempotent or not: call dispatch on the client 
and server side are exactly the same for idempotent and normal 
operations. However, when things go wrong, the operation mode 
(normal or idempotent) becomes important. Consider the following 
scenario:

1.	A client invokes an operation on an object in a server.
2.	The client-side run time makes a successful write system 

call on the appropriate socket to send the request.
3.	The client-side run time calls read on the socket to read the 

server’s reply to the request.
4.	The read system call returns an error indicating that the con-

nection was lost.

At this point, the client-side run time is in a difficult situation be-
cause it cannot know exactly when the connection was lost:

It may have been lost immediately after the •	 write system 
call returned, that is, after the request data was copied into the 
client-side transport buffers in the kernel. In that case, the data 
was never sent to the server, but only buffered in the client’s 
machine.
Alternatively, the connection may have been lost some time •	
after that data was physically transmitted to and read by the 
server. In that case, the operation was actually executed by the 
server, but the reply from the server to the client was lost.

In other words, in the preceding scenario, the client-side run time 
has no idea whether or not the operation ended up executing in the 
server. Either is possible, and there is no way to find out.

In many cases, the Ice run time will automatically retry a failed 
request before propagating any error back to the application. This 
also applies to lost connections: the Ice run time will automati-
cally re-establish lost connections and re-send failed requests, but 
only if it can guarantee that doing so will not violate at-most-once 
semantics.

In the preceding scenario, the Ice run time cannot safely re-send 
the failed request because doing so might end up executing the 
operation in the server a second time.

If you mark an operation as idempotent, the Ice run time relaxes 
its conservative rules and is more aggressive in trying to recover 
from transient errors. In particular, for the preceding scenario, if 
the operation is idempotent, the run time will attempt to re-estab-
lish the lost connection and send the request a second time before 
propagating any error to the application because idempotent tells 
the run time that is safe to do so.

All this means that, if you use idempotent where appropri-
ate, you have a better chance for the Ice run time to transparently 
recover from errors that, otherwise, you would have to deal with 
yourself. So, it pays to use idempotent on operations for which 
it is appropriate. In general, these are all operations that only read 
data in the server, but do not modify it, such as get operations, and 
set operations that do not operate on previous state. (Such opera-
tions are also known as stateless or context-free operations.)

Note that life-cycle destroy operations are never idempotent, 
even though they look like they are. (See the life cycle chapter in 
the Ice Manual for a detailed explanation. Briefly, the reason is 
that, if the client loses connectivity to the server at the wrong mo-
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ment, the client can draw false conclusions about the existence of 
an object.)

Also note that, even if an operation’s signature suggests that it 
is idempotent as far as the client is concerned, the operation may 
not be idempotent in the server. This usually is the case if you have 
an operation that reads data in the server in order to return it to 
the client, but also updates state in the server as a side-effect, for 
example, to update a statistics counter. In that case (at least if you 
care about accurate statistics), you should not mark the operation 
as idempotent. (This is the same as the difference between logical 
const-ness and physical const-ness in C++; you must decide which 
is appropriate and implement the operation accordingly.)

Q: Does idempotent affect the on-the-wire contract?

In a nutshell, the answer is yes. You cannot invoke an operation 
that is idempotent in the server as a normal operation from a client, 
and vice-versa. Let us look at an example to illustrate the reason 
for this. Suppose the server uses the following Slice definition:

// Slice 
interface Server 
{ 
    void doSomething(); 
};

Whatever it is that doSomething actually does, the author decided 
not to mark the operation as idempotent. (Presumably, the author 
knew what he or she was doing and had good reasons for this.)

Now the client copies the Slice definition and modifies it as 
follows:

// Slice 
interface Server 
{ 
    idempotent void doSomething(); 
};

When the client invokes the operation, it receives a 
MarshalException. This is because the Ice run time marshals 
whether an operation is idempotent or not as part of the request 
and, in the server, explicitly checks whether the client’s view of 
the operation matches the server’s view. If the server receives an 
idempotent invocation for a normal operation (or vice-versa), it 
raises a MarshalException.

If Ice would not raise an exception in this case, the client could 
get away with the preceding trick and, unwittingly, cause damage 
to the state in the server; by checking that the client’s and server’s 
view match, Ice improves type safety and prevents such mistakes.

Another reason for marshaling whether an operation is 
idempotent is to allow routers (such as Glacier2) to correctly pre-
serve at-most-once semantics: without this information, the router 
would need access to the Slice definition of all operations that are 
invoked via the router.

Q: How does Freeze deal with idempotent?

In a nutshell, it doesn’t: Freeze treats idempotent operations 
exactly the same as normal operations. That is because both read-
only and update operations may be idempotent:

// Slice 
interface Example 
{ 
    idempotent int getVal(); 
    idempotent void setVal(int val); 
};

Both getVal and setVal are idempotent operations, but only 
getVal is read-only; setVal is idempotent even though it modi-
fies state in the server.

What Freeze cares about—or, more precisely, what a Freeze 
evictor cares about—is not whether an operation is idempotent or 
not, but whether an operation modifies state in the server. (Opera-
tions that modify state are known as mutating operations; opera-
tions that do not are known as non-mutating operations.) You 
can inform Freeze whether an operation is mutating or not with a 
metadata directive:

// Slice 
interface Example 
{ 
    ["freeze:read"] idempotent int getVal(); 
    ["freeze:write"] 
    idempotent void setVal(int val); 
};

These metadata directives mark getVal as a non-mutating opera-
tion, and setVal as a mutating operation. A Freeze evictor needs 
to know whether an operation is non-mutating in order to decide 
how to deal with a request—depending on the evictor, it may use 
different strategies to deal with the database. For example with a 
transactional evictor, mutating operations are performed in separate 
transactions whereas non-mutating operations can be completed 
without accessing the database at all if the data is already in the 
evictor’s cache.

If you do not specify any metadata directive, Freeze as-
sumes that the corresponding operation is non-mutating. It fol-
lows that you must mark all operations that are mutating with a 
freeze:write metadata directive.
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