onnections

ZeroC’s Newsletter for the Ice Community

Welcome to Connections!
ZeroC’s Chief Scientist, Michi
Henning, wrote a wonderful article
for this second issue of Connections.
In “To Slice or Not to Slice...” Michi
first explores why some develop-

ers try to avoid interface definition
languages, even though they form the
very foundation of distributed computing. Next, he analyzes
the web services approach to interface definitions, and ex-
poses them as the exact opposite of what many believe they
are, namely that, in contrast to Slice or CORBA IDL, they are
designed to be human-unreadable. For those of you who keep
an open mind and are not yet too indoctrinated by the current
XML craze, this article is a must-read!

As always, this issue of Connections also has interesting
articles about Ice programming techniques. We expand on the
first issue’s chat server example, an application that we will
refine further in upcoming issues. We also start a new series
about thread safety, one of the most difficult programming
disciplines. Stay tuned for more articles about this important
subject in future issues of Connections.

As we expand Ice into new domains, we will use
Connections to inform our user community about the latest de-
velopments at ZeroC. This issue explores how “IceGrid” will
simplify the use of Ice in grid computing environments, while
a future article will introduce you to “Ice-E,” our solution for
embedded systems with platform support for everything from
cell phones to real-time operating systems.

As always, we would love to hear your opinion of our news-
letter. Join our user forum at http://www.zeroc.com/vbulletin/,
and let us know what you liked or disliked, and what you
would like to see in future issues of Connections.

)y =

Marc Laukien
President
ZeroC, Inc.

Connections

Issue Features

To Slice or Not to Slice

Interface definition languages are a cornerstone of middleware:
they define type systems and allow code to be generated that
otherwise would have to be laboriously written by hand. Yet,
some people seem to think that interface definition languages
are not necessary and that web services can somehow make

do without them. This article takes a closer look at the truth or
untruth of this idea and contrasts the approaches taken by Ice
and web services to define type systems.

Advanced Use of Glacier2

The second in a continuing series of articles on application de-
velopment with Ice, this article addresses several limitations in
the initial chat server implementation and demonstrates how to
use Glacier2’s advanced capabilities to improve the robustness
of an Ice server.

Thread-Safe Marshaling

Making your Ice server thread-safe may require more than
simply adding synchronization to your servant. This article
describes the interaction between the Ice runtime and a servant
and explains how to avoid a subtle thread-safety issue in your
application.

Ice and Grid Computing

As the practical applications of grid computing continue to

grow, ZeroC is introducing a new product that aims to simplify
the deployment of Ice servers in grid environments. This article
describes the features we expect to include in the initial release.

Contents

To Slice or Not to SLCE... .ceoevveieiiiiirieicicieeeee 2
Advanced Use of Glacier2ccccccecevevenieevenencnnennnn 6
Thread-Safe Marshalingccccocceeveevienienienienenne. 11
Ice and Grid Computingccceevververeereereereeneeennes 14
FAQ COIMET ..ottt e 16

Issue 2, May 2005

ZeroC’s Newsletter for the Ice community

Issue Number 2, May 2005

http://www.zeroc.com/vbulletin/

To SLICE orR NOT TO SLICE...

To Slice or Not to Slice...

Michi Henning, Chief Scientist

I recently had an e-mail conversation with a developer at a com-
pany that was considering Ice for a project. As is often the case, the
company was also evaluating web services. During our conversa-
tion, the developer expressed concern that Ice might be rejected
because his “management has gone cold on interface definition
languages.”

I was quite puzzled by this remark—how can someone go “cold”
on interface definition languages? By implication, this both means
that interfaces do not need describing and that web services do not
use an interface definition language, neither of which is correct. So,
I thought it might be interesting to describe the purpose of interface
definition languages, discuss the consequences of not using such a
language, and to contrast Slice and WSDL.

Purpose of Interface Definition Languages

Type System Definition

Interface definition languages, such as Slice, WSDL, CORBA
IDL, and DCE IDL, have a number of purposes. Depending on
the middleware platform, these purposes may vary; but, irrespec-
tive of the middleware, all interface definition languages share one
common purpose, namely, to define a #ype system. This means that
the language describes the types of values that will be exchanged
between client and server, as well as the operations that a client
can invoke, and the types of values that are passed between client
and server with each operation. Depending on the exact language,
it may also provide mechanisms to describe type substitutability
(inheritance) and support objects and polymorphism. (Slice and
CORBA IDL do this, whereas DCE IDL and WSDL do not.)

The point of defining a type system is to ensure that client and
server agree on the kinds of messages that are exchanged. Without
a type system, communication would be impossible. For example,
we may have an operation that expects to be passed an integer and
a string. It is the type system that embodies this knowledge, and
client and server must agree on it—if the server expects an integer
and a string, but the client sends two doubles, things are simply not
going to work.

Apart from defining a type system, interface definition languages
can serve a number of other purposes.

API Definition

Interface definition languages can serve to define APIs: a compiler
processes a definition and generates source code for a particular
target language, such as C++. The generated code provides an API
that the application code calls in order to manipulate values (such

Connections

as inserting a value into a sequence), invoke operations, manage
memory, handle exceptions, and so on.

The rules that govern exactly how an interface definition re-
sults in a particular API are known as language mappings. Slice,
CORBA IDL, and DCE IDL all define mappings for one or more
languages, each using its own set of rules. (The quality and ease-
of-use of the generated API varies considerably, but that is the
topic of another article.) Note that the actual language mapping
typically is not specified by the interface definition language itself,
but is governed by a separate set of rules written down elsewhere
(although, in the case of Slice, you can influence a few specifics of
the mapping with metadata directives).

WSDL does not define language mappings—the specification is
silent about how an application interacts at the programming-lan-
guage level with a web service that is defined by WSDL. (The JAX
RPC specification defines a mapping between WSDL and Java.
However, the specification is not supported by many web services
toolkits, and there are no standardized mappings for other languag-
es, so each toolkit creates its own proprietary API.)

Protocol Definition

Interface definition languages can specify protocols. A protocol is
a set of rules that determine the choreography of on-the-wire mes-
sages that are exchanged between client and server. For example,
the Ice protocol specifies that each message begins with a mes-
sage header and defines the contents of that header. Similarly, for
each message type, the protocol defines a header that is specific

to the type of message and that follows the message header. The
protocol also defines rules for how messages are to be exchanged.
For example, a reply message must be returned in response to a
request message, and a connection opened by a client must be
acknowledged by the server in the form of a validate-connection
message before the client can send anything else. In other words,
a protocol defines the layout and meaning of headers as well as a
state machine that defines how and in what order messages must be
exchanged.

Ice, CORBA, and DCE do not specify protocols as part of their
respective IDLs. Instead, the protocol is determined by informa-
tion that is implied or stored elsewhere, such as in configuration
information for the runtime. With WSDL, the protocol is specified
as part of the binding element.

Serialization and Encoding Definition

The term serialization refers to how complex data structures, such
as sequences and dictionaries, are to be transmitted between client
and server. The emphasis here is on how individual data items

are ordered. For example, a typical serialization rule would be
“sequences are sent in increasing element order.” An alternative
serialization rule would be “sequence elements can be sent in any
order; each sequence element is preceded by its index.”

Issue 2, May 2005

ZeroC’s Newsletter for the Ice community

To SLICcE orR NOT TO SLICE...

The term encoding refers to how individual data items are rep-
resented as bytes on the wire. For example, typical encoding rules
would be “strings are sent in left-to-right order, with each character
encoded in UTF-8 format” and “doubles are sent in little-endian
byte order, encoded in IEEE format.”

Serialization and encoding are often jointly referred to as mar-
shaling (with the inverse process known as unmarshaling).

As for protocols, Ice, CORBA, and DCE do not specify marshal-
ing as part of their respective IDLs, whereas WSDL specifies the
format of messages in its binding element.

Transport Definition

Underneath the message, protocol, and marshaling layers, we have
a transport that is used for communication between client and
server. The distinction between “protocol” and “transport” is often
blurred—whether something is a protocol or a transport can depend
on the perspective of the developer. (For example, to a middleware
developer, TCP/IP is a transport, whereas, to a TCP/IP devel-

oper, Ethernet is a transport.) As far as middleware is concerned,
any medium outside the middleware itself is usually viewed as a
transport. From that perspective, TCP/IP, SSL, and UDP are all
transports.

Ice, CORBA, and DCE do not specify transports as part of
their respective IDLs, whereas WSDL specifies the transport in its
binding element.

Enforcement of the Client—Server Contract

The prime motivation for the use of interface definition languages
is to automate the chores of adhering to a protocol, serializing

and encoding data, selecting an appropriate transport, and so on.
Given an interface definition, a compiler can generate code that
links with client- and server-application code to handle all of these
chores. (The generated client- and server-side code is called stubs
and skeletons or proxies and stubs, respectively, depending on the
middleware.)

Generated code reduces development cost because generated
code does not need to be written by developers. Moreover, inter-
face definition languages raise the level of abstraction because
(exempting WSDL) they shield the developer from low-level
detail, such as choosing an appropriate data encoding. However,
the biggest payback from interface definition languages is that
generated code enforces the client—server contract at compile time:
the generated stubs and skeletons (as a rule) have an API that is
statically type-safe, meaning that any attempt to pass incorrect data
between client and server (such as a double instead of a string) is
caught when the program is compiled.

It is well documented that, over the life cycle of an application,
the earlier an error in a program is detected, the lower the cost of
fixing the error, so catching errors at compile time is valuable.

Issue 2, May 2005

Can We Live Without Interface Definition Languages?

As we established earlier, it is essential that client and server agree
on how information is to be exchanged between them. Seeing

that the one purpose that is common to all IDLs is to define a type
system and to generate code, the question boils down to whether
we can live without a type system definition language and, conse-
quently, without generated code.

The answer is “yes”: it is possible to write distributed applica-
tions without any kind of IDL. For example, Ice and CORBA both
offer dynamic invocation and dispatch interfaces. These interfaces
permit a developer to invoke operations from a client and to imple-
ment them in a server without ever writing a single line of interface
definition. However, using these interfaces extracts a price: in es-
sence, they require the developer to explicitly implement much of
the functionality that is otherwise provided by generated code. The
developer simply has to know that a particular operation expects an
integer and a string (in that order), and has to write explicit state-
ments that place the integer and the string on the wire on the client
side and retrieve them again on the server side.

The problem with dynamic invocation and dispatch is that it rap-
idly becomes complex. It is easy for developers to make mistakes,
such as sending parameters in the wrong order or of the wrong
type, or to invoke an operation on an object that does not support
that operation. Moreover, the definition of the types, operations,
and parameters are no longer explicitly manifest in a convenient
interface definition. To find out how the type system works, I have
to read the client and server code and reconstruct the type system
from that. Obviously, this is a lot harder and error-prone itself.

What makes it worse is that any errors are no longer detectable
at compile time. Instead, error detection is deferred until run time,
and errors are detected only if there is a test case to expose them.
This means that, quite often, errors are not detected until well after
an application is deployed, with sometimes disastrous cost blow-
outs.

Still, there are applications that truly require dynamic invocation
and dispatch, such as message routers, protocol bridges, firewalls,
and publish-subscribe event services. In order to stay generic, such
services cannot depend on a fixed type system that is defined prior
to deployment because the type system may change at any time.
However, these applications are in the minority. The overwhelm-
ing majority of applications operate on a fixed type system that is
known in advance and does not change during the applications’
lifetime.

Given the cost and potential dangers of dynamic invocation and
dispatch, you should consider its use very carefully. You should
make the trade-off between error detection at compile time versus
error detection at run time only if there is a significant payback in
terms of flexibility, and only if that flexibility truly is required by
your application.

Connections

ZeroC’s Newsletter for the Ice community

To SLICE orR NOT TO SLICE...

But back to the question of whether we can live without inter-
face definition languages... Yes, we can live without interface
definition languages, but we cannot live without interface defini-
tions! Even when using dynamic invocation and dispatch, there
must still be agreement between client and server about the type
system. If we do not use an interface definition language, we must
use some other way to enforce the agreement. For example, we can
write a data model on a whiteboard and tell all developers to look
at the board religiously (and some of them might even do that). Or
we can just rely on programmers’ good will (and good debugging
skills). One way or another, the agreement must be enforced or the
application will break.

The preceding discussion should make it clear that the phrase
“going cold on interface definition languages” is strange indeed.
In fact, even if we do use dynamic invocation and dispatch and
forgo compiled stubs and skeletons, we would still be better off
writing an interface definition and compiling it, even if we were
to throw the generated code away. After all, that way, we could at
least be sure that the definition is internally consistent (because it
compiles), and we would have a definitive document containing the
definition, written in a well-defined formal language that is easy to
read.

Slice versus WSDL

Given that we have established the need for interface definitions (if
not the need for interface definition languages), it seems appropri-
ate to compare Slice and WSDL in the context of deciding which
technology you should use. WSDL in the web services world
serves the same need as IDLs for other middleware: it defines a
type system and, thereby, enables code generation. (And, even with
web services, very few people seriously suggest to not use WSDL.)

Orthogonality

Apart from defining a type system, WSDL also concerns itself
with a number of other things. One of these is the binding ele-
ment that defines protocol and marshaling rules for accessing

a service. Another is the port element: a port is a definition of
an endpoint at which a service can be reached, such as <soap:
address location="http://127.0.0.1:8988/myApp/
myService”/>. Yet another is the message attribute of a
portType element: it defines whether a particular message is
an ordinary twoway invocation, a oneway invocation, a twoway
callback from server to client, or a oneway callback from server to
client.

In contrast, “pure” IDLs, such as Slice, keep their focus on the
type system and do not concern themselves with protocol, marshal-
ing, endpoint, and invocation details. Which is better?

One of the golden rules of computing is divide and conquer:
focus on one thing at a time, and solve orthogonal sets of problems
using separate mechanisms. Such separation of concerns is valu-
able because it makes it possible to independently change things

Connections

in one problem set without affecting all the other problem sets.
WSDL concerns itself with issues that are quite independent from
each other, such as the type system, the protocol and transport, and
the style of operation dispatch. If nothing else, this makes things
more complex (because WSDL specifies more things than Slice),
and it dilutes the focus of the developer: “What am I doing here?
Am I specifying endpoints, or call dispatch, or types?”

A definite pragmatic downside of the WSDL approach is that a
simple change can have significant impact on development time:
changing a minor detail (such as the endpoint of a service) requires
recompilation of the definition and, consequently, recompilation
of all system components that depend on that definition. This often
means that the majority of source files that make up an application
require a rebuild, even though the specific change might not strictly
require rebuilding most of these files. If you have sophisticated
development tools that are intimately aware of the meaning of the
various parts of a specification, this problem can be mitigated (but
most development tools are not that smart).

Ergonomics

XML is often described as “human-readable” (a term that is fre-
quently used as an advantage of SOAP, and generally used to jus-
tify the use of XML for all sorts of things). Consider the following
WSDL specification:

<?xml version="1.0"7?>
<definitions name="StockQuote"
targetNamespace=
"http://example.com/stockquote.wsdl"
xmlns:tns="http://example.com/stockquote.wsdl"
xmlns:xsdl="http://example.com/stockquote.xsd"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/
soap/"
xmlns="http://schemas.xmlsoap.org/wsdl/">
<types>
<schema targetNamespace=
http://example.com/stockquote.xsd
xmlns="http://www.w3.0rg/2000/10/XMLSchema">
<element name="TradePriceRequest">
<complexType>
<all>
<element name="tickerSymbol"
type="string"/>
</all>
</complexType>
</element>
<element name="TradePrice">
<complexType>
<all>
<element name="price" type="float"/>
</all>
</complexType>
</element>
</schema>
</types>
<message name="GetLastTradePricelInput">
<part name="body" element=

Issue 2, May 2005

ZeroC’s Newsletter for the Ice community

http://developers.sun.com/sw/building/tech_articles/overview_wsdl.html
http://developers.sun.com/sw/building/tech_articles/overview_wsdl.html

To SLICcE orR NOT TO SLICE...

"xsdl:TradePriceRequest"/>
</message>
<message name="GetLastTradePriceOutput">
<part name="body" element="xsdl:TradePrice"/>
</message>
<portType name="StockQuotePortType">
<operation name="GetLastTradePrice">
<input message="tns:GetLastTradePriceInput"/>
<output message="tns:GetLastTradePriceOutput"
/>
</operation>
</portType>
<binding name="StockQuoteSoapBinding"
type="tns:StockQuotePortType">
<soap:binding style="document"
transport=
"http://schemas.xmlsoap.org/soap/http"/>
<operation name="GetLastTradePrice">
<soap:operation
soapAction=
"http://example.com/GetLastTradePrice"/>
<input>
<soap:body use="literal"/>
</input>
<output>
<soap:body use="literal"/>
</output>
</operation>
</binding>
<service name="StockQuoteService">
<documentation>My first service</
documentation>
<port name="StockQuotePort"
binding="tns:StockQuoteBinding">
<soap:address location=
"http://example.com/stockquote" />
</port>
</service>
</definitions>

This is quite a lengthy specification. Here is the equivalent Slice
definition:

// My first service
interface StockQuoteService

{
float GetLastTracePrice(string tickerSymbol);

}s

You may have your own opinion on which specification is easier to
read and write. (Personally, it did not take me long to make up my
mind...) Even without knowing any detail about WSDL, it is im-
mediately obvious that writing WSDL by hand would be prohibi-
tively slow, so it needs to be generated from some other descrip-
tion. You might expect that a common way of doing this would be
to have a higher-level language, such as Slice, and to translate that
language into WSDL. However, this is not the case: many tool-
kits instead generate WSDL from Java source that is embellished
with comments that embed the additional information required by
WSDL.

Issue 2, May 2005

The problem with this approach is that it results in two equally
useless definitions of the type system: the source code, from which
it is hard to extract the type system definition because the code is
cluttered with executable statements, and the WSDL, which, at
even the most modest level of complexity, is essentially unread-
able. And, of course, the approach does not get rid of the inter-
face definition language on which “management has gone cold”:
instead, it carefully hides the interface definitions in amongst a big
pile of source code, so they are out of sight.

Differences in Type Systems

Slice and WSDL do not have identical built-in types. For example,
WSDL provides built-in types for things such as date and time.
Whether this is an advantage is questionable: most programming
languages do not have equivalent built-in types so, by necessity,
language mappings must be supplemented with library code that
emulates the missing types. In turn, this makes language mappings
more complex to learn and use.

WSDL also provides unsigned integers. Unfortunately, these
cause major headaches with languages that do not have the concept
of unsigned integers, such as Java. Unsigned integers can cause
interoperability problems: it is anyone’s guess what happens when
a C++ client sends an unsigned integer that exceeds the range of a
signed integer to a Java server. (Programmers usually deal with this
problem using the ostrich approach—at least until they eventually
run out of sand...)

A much more serious issue with WSDL, however, is that it lacks
any notion of object-orientation. The reason for this is histori-
cal: one of the driving forces behind web services was a wish to
integrate functionality provided by web servers into client ap-
plications. Without a well-defined API to get at the functionality,
developers were forced to parse HTML, which is inefficient as well
as complex and error-prone: if a web server’s HTML pages are up-
dated, the code easily breaks. Web services were meant to address
this problem but, due to the designer’s mind-set and background,
object-orientation was never given serious consideration. (Ironi-
cally, SOAP originally stood for Simple Object Access Protocol,
but people kept pointing out that there are no objects in SOAP; the
solution to this dilemma was to declare that “SOAP” simply stands
for itself and is not an acronym.)

Proponents of web services maintain that there is no need for ob-
ject-orientation, claiming that this has the advantage of simplicity.
In effect, the only notion of “object” in web services is that of an
entire service. However, true object-oriented features, namely in-
heritance, polymorphism, late binding, and type substitutability, are
non-concepts in WSDL. In contrast, Slice supports these features,
so you can create a fully object-oriented view of your application
that seamlessly spans the client—server boundary, without having to
map down to a procedural and data-centric view for remote com-
munication.

Connections

ZeroC’s Newsletter for the Ice community

To SLIcE orR NoOT TO SLICE...

One of the aims of web services is to provide a global e-com-
merce infrastructure. By necessity, such an infrastructure, once
finally established, will be extremely complex and represent one
of the largest collections of inter-connected computer systems on
Earth. In the light of decades of research and experience that have
shown object-orientation to be a powerful abstraction mechanism,
it seems questionable whether throwing it away was a wise deci-
sion. Certainly, one is reminded of the saying about the baby and
the bath water...

Syntax

So why on earth would anyone use XML to describe type systems
if it is so inconvenient? Partly the answer can be found in history:
the development of web services rode the XML craze of the late
90’s, and if something wasn’t XML, it was automatically passé,
regardless of whether XML was a suitable syntax or not. (SOAP is
a case in point, but I digress...)

However, there is a legitimate case for having XML descriptions
of type systems: XML is a universal syntax—a lingua franca that
is useful for the exchange of information between various tools.
This is useful (though not essential) when it comes to interfacing
development environments with things such as UML generators or
metadata repositories. In this respect, WSDL is better than Slice,
albeit to the detriment of clarity, usability, and development and
maintenance cost.

Summary

As we have seen, web services cannot reasonably live without in-
terface definition languages, and neither can middleware platforms
such as Ice or CORBA. The need for interface definition languages
is in the nature of the beast, whether you love them or hate them.
Fundamentally, WSDL and Slice are equivalent, in that they both
define type systems and enable code generation, but WSDL also
specifies many other details that are orthogonal to type systems and
better kept elsewhere.

The human-unreadable nature of XML requires the use of ad-
ditional tools for generating XML, either from source code or from
another definition language that provides sufficient detail to capture
all the information required by WSDL. Regardless, this obscures
the actual interface definitions, either because they are buried in the
source code, or because they are cluttered with additional informa-
tion, such as endpoint details.

The lack of object-oriented features in WSDL is a serious
limitation. In effect, web services revert back to the procedural and
data-centric programming style of the seventies. Claiming such a
retrograde step as an advantage seems self-serving in the extreme.

One advantage of WSDL over Slice is that, due to its standard
syntax, it can be exchanged among various development tools.
However, unless you have an overriding need to do this, the disad-
vantages of WSDL are likely to outweigh its one advantage.

Connections

At any rate, the notion of “going cold on interface definition lan-
guages” is nonsense—interface definition languages are a fact of
life with distributed systems, and they will not go away, no matter
how much management might wish them to. And, not withstanding
any personal bias on my part, I believe that you should be able to
Slice your cake and eat it, too.

Issue 2, May 2005

ZeroC’s Newsletter for the Ice community

ADVANCED USE OF GLACIER2

Advanced Use of Glacier2

Matthew Newhook, Senior Software Engineer

Introduction

In Issue 1 of Connections, we presented a very simple chat server
that used Glacier2 to satisfy its session management requirements.
This article describes how to make that server more robust and bet-
ter suited for real-world deployments.

Firewalls

In a realistic deployment, the computer that hosts the chat server
will typically reside in a private network and be protected by a
firewall. Clients would interact with the server through a reserved
port on the firewall that is forwarded to the host computer. How-
ever, this strategy requires that all proxies published by the server
point at the firewall’s address and port, and not at the inacessible
internal address of the server itself (see Figure 1).

With a Glacier2 deployment, you can accomplish this using a
one-line addition to the Glacier2 configuration. If the firewall ad-
dress is firewall.mydomain.org and port 13500 is forwarded,
you would add the following property to the Glacier2 configura-
tion:

// Glacier2 configuration
Glacier2.Client.PublishedEndpoints=ssl -h
firewall.mydomain.org -p 13500

A client-side firewall (if present) would not pose a problem for our
application because the connection between the client and Glacier2
is bidirectional, as described in the previous article.

Transport Issues

We must address some transport issues to ensure that the chat
server meets our reliability and performance requirements.

Figure 1: Glacier2 Deployment with Firewall

Assume for the moment that we don’t use Glacier2 in our appli-
cation, and instead the client connects directly to the server. Now
consider the following hypothetical code:

// C++
void
ChatRoom: :enter (const ChatCallbackPrx& callback)
{
Lock sync (*this);
~members.push back(callback) ;

}

void
ChatRoom: :message (const string& data)

{

const

Lock sync (*this);
list<ChatCallbackPrx>::const iterator p;
for(p = members.begin();

p != members.end();
++p)

try
{

(*p) —>message (data) ;
}

catch (const LocalExceptioné)
{
}

}

The chatCallback: :message invocation in this scenario is

a twoway invocation that locks the ChatRoom object for the
duration of the call. Furthermore, since the request is sent over
the Internet, we expect it to take some time. Given a latency of,
say, 25ms, this implementation would be limited to 40 messages
per second—not nearly enough. Even worse, since no timeouts
are configured, a misbehaving client that has a network problem
or maliciously blocks in the message operation may delay the
response indefinitely! Clearly, this is not an acceptable solution.

What if we were to use a oneway proxy instead of a twoway
proxy? Unfortunately, this would not fix the problem. A client that
fails to read messages from the network would cause the protocol
stack to fill up and, eventually, TCP/IP flow control would cause
the server’s call to message to block.

An alternative solution is to buffer
message invocations using a separate
server thread for each client. That

Zi?\ll\llgl’k Zz\t/v?/ik way, if a client misbehaved during the
message invocation, only the offend-
ing client would be affected. However,

Firewall this is non-trivial to code and intro-
_ <8 £8 duces scalability problems, such as
Client €«—SSL—> o5 <«—Forward—>»<«——SSL—»|)= Glacier2 running out of threads.
IP:1.2.3.4 IP: firewall. mydomain.org IP: 192.168.1.1

Issue 2, May 2005

Connections

ZeroC’s Newsletter for the Ice community

ADVANCED USE OF GLACIER2

Figure 2: Message Routing with Glacier2

Private ! Public
Network Network
say) [say()
Server —oneway» | Glacier2 <twoway» Client
How Glacier2 Helps

Fortunately, Glacier2 can help you solve this problem. The server’s
invocation of message is delivered in two steps: the server sends
the invocation to the Glacier2 router, and then the router sends

the invocation to the chat client. The chat server code uses the
ChatCallback proxy as a oneway proxy instead of a twoway
proxy, which means the server sends the data to the Glacier2 router
in a oneway invocation. However, the Glacier2 router forwards the
invocation to the client as a twoway invocation (Figure 2).

You may be wondering whether this strategy is safe. The answer
is yes: this setup is safe in that a misbehaving client or a slow net-
work connection cannot cause the entire server to block, as long as
Glacier?2 is using buffered mode. However, for reasons we describe
later, we do not recommend this strategy.

In its buffered mode (which is the default), the Glacier2 router
queues requests and creates a separate thread for each connected
client that forwards the client’s requests. In its unbuffered mode,
the router forwards each request immediately, which presents some
limitations that are unacceptable for the chat server: if we were to
use unbuffered mode and a client were to block for any reason, all
other clients connected through the router in question would also
stop receiving messages. This would occur regardless of whether
the messages between the router and the client were twoway or
oneway. Note that using oneway messages merely delays this
problem, but does not prevent it (see the FAQ question “Why can
oneway requests block?” in this issue for more information).

You can set the buffering mode independently for each direction
that requests travel. By default, buffered mode is enabled for both
directions, so using a oneway call to Glacier2 and a twoway call
from Glacier2 to the client is safe in the default configuration. (See
the Ice manual for more information on the buffering modes.)

Oneway Messages Are Not Reliable

Is using a oneway proxy to send messages to the Glacier2 router
a good idea? If Active Connection Management (ACM) is used,
oneway messages can be lost without any notification to the ap-
plication. But, for scalability reasons, we need to use ACM on
the back end, including between the Glacier2 router and the chat
server. Therefore, we have to use twoway messages between the
chat server and the Glacier2 router.

Connections

However, as previously discussed, using twoway messages in
the entire ChatCallback: :message call chain is a bad idea.
Given this, the only other place we could use a oneway message
is between the Glacier2 router and the client. However, can’t these
messages be lost too? The answer is clearly yes. However, this situ-
ation is different because ACM is disabled between the Glacier2
router and the client, therefore messages can only be lost if the cli-
ent terminates; losing a chat message in this situation is acceptable.

Since oneway messages are a complex topic, we have devoted
the FAQ corner of this issue to them. You can find additional
details there.

Recommended Configuration

Now to the heart of the matter: the recommended configuration for
the chat server is to use a tvoway message to the Glacier2 router.
This provides maximum reliability and does not cause problems for
the message implementation because Glacier2 is always well-be-
haved and does not block the server for any length of time. Ideally
we should not hold the lock inside message for the duration of the
RPC (to allow for better concurrency), but we will address this in a
future article.

For the communication between Glacier2 and the chat clients,
we’ll use oneway messages. This provides maximum throughput
and avoids problems due to network latency or malicious clients.
In addition, the Glacier2 router must use buffered mode for server-
to-client calls.

How is the Glacier2 router told to make oneway invocations
back to the clients? This is accomplished by supplying a request
context containing a special key that is recognized by Glacier2.
The key is “ fwd” (which stands for “forward”), and the value is

[TPRL)

o” (which stands for “oneway”):

// C++
void
ChatRoom: :message (const string& data)

{

const

Lock sync (*this);

Context context;

context[" fwd"] = "o";
list<ChatCallbackPrx>::const iterator p;
for(p = members.begin();

p != members.end();
++p)

try
{

(*p) —>message (data, context);

}

catch (const LocalExceptioné)
{
}

}

If all calls on the proxy are to use this Context, then a simpler and

Issue 2, May 2005

ZeroC’s Newsletter for the Ice community

http://www.zeroc.com/Ice-Manual.pdf

ADVANCED USE OoF GLACIER2

safer way to accomplish the same thing is to change the context on
the proxy itself:

// C++
void
ChatRoom: :enter (const ChatCallbackPrxé& callback)
{
Lock sync (*this);
Context context;
context[" fwd"] = "o";
ChatCallbackPrx cb =
ChatCallbackPrx: :uncheckedCast (
callback->ice newContext (context));
_members.push back (cb) ;

}

Now any invocation on the callback proxy uses the context estab-
lished with ice newContext and there is no need to explicitly
pass the context to each call of message.

Batch Oneway Messages

Glacier2 supports sending oneway messages in batches. In this
mode, the router groups together several messages and periodi-
cally sends them in one batch. This can potentially send multiple
chat messages in a single protocol message, which is more efficient
and consumes less bandwidth. To enable batch oneway requests,

@ _ 9

change the “0” to an “0”.

// C++
void
ChatRoom: :enter (const ChatCallbackPrxé& callback)
{
Lock sync (*this);
Context context;
context [" fwd"] = "O";
ChatCallbackPrx cb =
ChatCallbackPrx: :uncheckedCast (
callback->ice newContext (context));
_members.push back(cb) ;

}

Note that batching of messages does not work unless you use
Glacier2’s buffered mode. You should also set
Glacier2.Server.SleepTime so that messages get a chance to
accumulate for batching purposes.

// Glacier2 Configuration
Glacier2.Server.SleepTime=500

Compressed Messages

Since the data we send through our chat clients is plain text, it
tends to compress very well and therefore it’s a good idea to enable
protocol compression. You may be tempted to write the following,
but beware, it is incorrect:

Issue 2, May 2005

// C++
void
ChatRoom: :enter (const ChatCallbackPrx& callback)
{

Lock sync (*this);

_members.push back(

ChatCallbackPrx: :uncheckedCast (
callback—>ice_compress(true)));

}

This only enables data compression from the chat server to the
Glacier2 router. However, since we assume the internal network to
be extremely fast, this would actually slow things down because,
on fast networks, it is quicker to send the uncompressed data.

Instead, we want to enable compression between Glacier2 and
the chat clients. To do this, we must set another key in the request
context. For compression the value is “z”, and we’ll add this to
the context information that is set on the proxy in ChatRoom: :
enter. (For efficiency reasons, the Ice protocol does not com-
press messages smaller than 100 bytes, even with this key set.
However, since we are using Glacier2 in batched mode, messages
will typically be larger and therefore will be compressed, espe-
cially in a busy chat room.)

// C++
void
ChatRoom: :enter (const ChatCallbackPrx& callback)
{
Lock sync (*this);
Context context;
context[" fwd"] = "Oz";
ChatCallbackPrx cb =
ChatCallbackPrx: :uncheckedCast (
callback—>ice_newContext(context));
_members.push back(cb);

}

Now the information is forwarded by the Glacier2 router in com-
pressed form in batched oneway invocations. The calling situation
we have now is shown in Figure 3.

Denial Of Service

We saw earlier how Glacier2 can help provide protection against
denial-of-service attacks when the server sends messages to cli-
ents. However, the attacks can occur in the opposite direction as
well: a malicious client could flood the server with requests. Since
it is not reasonable for a client to send more than one message or

Figure 3: Message Settings

Private ! Public
Network Network
say() | say()
Oneway/
Server <«twoway» Glacier2 ~Compres»| Client
sed

Connections

ZeroC’s Newsletter for the Ice community

ADVANCED USE OF GLACIER2

so per second, you should set the Glacier2.Client.SleepTime
property.

// Glacier2 configuration
Glacier2.Client.SleepTime=500

This causes the sending thread in the Glacier2 router to sleep for
500ms after forwarding all queued requests from a client. Note that
this property is only relevant when using buffered mode.

Note that the use of sleep timers does not introduce any addi-
tional latency unless the client tries to the flood the server. When a
request is received by the Glacier2 router, it is forwarded immedi-
ately, and then, as a safeguard against message flooding, the router
sleeps for the configured sleep time. In other words, as soon as the
user presses the return key, the message is sent and Glacier2 imme-
diately forwards it to the chat server. A delay would occur only if
the user sent another message within 500ms, which is not the case
in normal conversation.

Object Access

Once a client has established a session, Glacier2’s default behavior

allows that client to access any objects hosted by any servers acces-
sible from Glacier2. For example, if a chat user somehow obtained

a proxy for another user’s session, that user could pretend to be the

other user by calling the proxy’s say method.

As a security measure, Glacier2 can be configured to filter
requests based on object identity. An identity is composed of two
string members, name and category, but Glacier2’s filtering
mechanism considers only the category member. The primary
configuration parameter is
Glacier2.AllowCategories, which specifies a list of catego-
ries that all clients are permitted to use; invocations on objects
having other categories are rejected. However, this capability isn’t
very useful for the chat server as it currently stands. What we need
instead is to restrict a client’s access to those objects that are in
its current session, therefore we need a unique category for each
client.

The solution is to set the category field to the user id and to add
the user id to the list of allowed categories, which is accomplished
by setting the configuration property
Glacier2.AddUserToAllowCategories. The property has
three possible values: 0, meaning disabled; 1, meaning add the user
id to the list of allowed categories; and 2, meaning add the user id
prepended with an underscore to the allowed categories.

Using a value of 2 is useful because it establishes a set of re-
served categories for the server back end. For example, assume that
we set AddUserToAllowCategories to 1. If the chat server had
objects with a category value of dummy, it would be possible for a
client to access those objects by creating a user with the id dummy.
On the other hand, if we set the property to 2, we can ensure that
this situation cannot happen as long as we avoid using a leading
underscore in the categories of any protected chat server objects.

Connections

To enable this behavior, you must modify the Glacier2 configu-
ration as follows.

// Glacier2 configuration
Glacier2.AddUserToAllowCategories=2

You also need to create the session with the correct object identity:
the category must be “_” followed by the identity of the user:

// C++
virtual Glacier2::SessionPrx
create (const string& userld,
const Currenté& current)
{
Identity id;
id.category = " " + userId;
id.name = IceUtil::generateUUID();
return Glacier2::SessionPrx::uncheckedCast (
current.adapter->add (

new ChatSessionI (userId), id));

Timeout Detection

As discussed in the previous article, Glacier2 can automatically
destroy inactive sessions. The relevant Glacier2 configuration
property is shown below:

// Glacier2 configuration
Glacier2.SessionTimeout=30

This means that Glacier2 will destroy a session if it has no activity
for more than 30 seconds. Of course, 30 seconds is much too low
for a real deployment, but for testing purposes it is advantageous to
have a short timeout. We can expect many users to be logged into
several chat rooms and to be idle for long periods, so increasing the
timeout period does not help. However, disabling session timeouts
is not an option either, because network problems, bugs, and mali-
cious clients could cause the server to fill up with stale sessions.

The solution is to ensure that the session gets used periodically
while the client application is alive. We can do this by starting a
dedicated thread in the client that calls ice ping on the session at
regular intervals. The interval should be less than the Glacier2 ses-
sion timeout—in this case we pick 20 seconds to allow 10 seconds
of breathing room for network latency.

// C++
class SessionPingThread
public IceUtil::Thread,
public IceUtil::Monitor<IceUtil::Mutex>
{
public:

Issue 2, May 2005

ZeroC’s Newsletter for the Ice community

ADVANCED USE OoF GLACIER2

SessionPingThread (
const Glacier2::SessionPrxé& session)
_session(session),
_timeout (IceUtil::Time::seconds(20)),
_destroy (false)

Conclusion

By using the advanced features of Glacier2, you can protect your
servers from denial-of-service attacks, ensure that your servers

{ are highly scalable, and protect sensitive back-end objects without

) writing any additional code.
virtual void Stay tuned as the chat server continues to evolve in future issues
run () of Connections.

{
Lock sync (*this);
while (! destroy)
{
timedWait (_timeout);
if (_destroy)
{

break;

try
{
_session->ice ping();
}
catch (const Ice::Exceptioné& ex)

{

break;

}

void

destroy ()

{
Lock sync(*this);
_destroy = true;
notify();

}

private:
const SessionPrx _session;
const IceUtil::Time timeout;
bool destroy;

b

typedef IceUtil::Handle<SessionPingThread>
SessionPingThreadPtr;

This thread is started after establishing the Glacier2 session:

// C++
Glacier2::SessionPrx session = ...;
SessionPingThreadPtr ping =

new SessionPingThread(session);
ping->start();

We destroy the thread before Application: : run terminates:

// C++

SessionPingThreadPtr ping = ...;
ping->destroy () ;
ping->getThreadControl () .join() ;

Issue 2, May 2005 Connections

ZeroC’s Newsletter for the Ice community

THREAD-SAFE MARSHALING

Thread-Safe Marshaling

Mark Spruiell, Senior Software Engineer

Introduction

Ice simplifies the task of developing distributed object applications,
allowing you to focus on building your application and not on the
mundane details of marshaling, communication, and interoperabili-
ty. However, thread safety is one aspect of application development
that Ice cannot handle for you completely.

The Ice runtime is internally thread-safe, which means that mul-
tiple application threads can safely call methods on Ice run-time
objects and invoke remote operations without fear of synchroni-
zation problems, but only you can ensure that your Ice server is
thread-safe. This article describes a thread-safety issue that, if not
properly understood, can result in subtle errors in your program.

Dispatching Operations

Before we delve into the problem, let’s first review the steps taken
by the Ice runtime to dispatch an operation, as shown in Figure 1.

Upon receipt of a request message, the Ice runtime in the server
unmarshals the in-parameters and passes them as arguments to the
appropriate method in the servant. The return value and out-param-

Figure 1: Dispatching an operation

Client ___________server

1 1

| . Ice run time Servant E
1

: ' I I :

| request : I I :

I/—i—:/ﬁ I E

| ! — | i

| ' | unmarshal | ,

| ' == I "

| : ! [:

| ' | invoke | i

| ! [[;

| ' I I :

! ! | results | .

1

I : I I :

| ' | | :

| ' — | q

| ! | marshal | .

1

| : b

1 I !

: Lo

Lo

1

Connections

eters provided by the servant are marshaled into a reply message
that is sent back to the client.

Of particular importance to this article is the marshaling of the
operation’s results, which is the responsibility of the Ice runtime.
This is one of those “mundane details” that applications nor-
mally needn’t be concerned with. In fact, there is no reason to be
concerned, provided your object adapter uses a single-threaded
configuration.

However, when your configuration allows requests to be
dispatched concurrently, there is a subtle implication here that is
casily overlooked: the results of the operation may contain refer-
ences to the servant’s private state. Eventually, the Ice runtime
will marshal the results, but it’s possible for a concurrent request
to modify the private state before the runtime has had a chance to
marshal it. And therein lies the problem.

An Example

The following Slice definitions describe a contrived inventory ap-
plication that illustrates the thread-safety issue:

// Slice
module Inventory

{

struct Location

{
string aisle;
string shelf;
}i

struct ProductInfo
{
string id;
string desc;
float cost;
float markup;
Location loc;

}i

interface Warehouse
{
ProductInfo getProductInfo(string id);
void updateCost (string id, float cost,
float markup) ;
}i
}i

Now imagine that we have implemented a Warehouse object in

a language for which a Slice struct is mapped to a reference type,
such as Java. We’ll also assume that our server is configured with
several threads in its thread pool so that requests can be dispatched
concurrently.

The thread-safety issue is depicted in Figure 2, where T1 and T2
represent threads that are dispatching operations on a Warehouse
servant. T1 invokes get ProductInfo on the servant and receives
areference to a ProductInfo value (a Java object reference) as

Issue 2, May 2005

ZeroC’s Newsletter for the Ice community

THREAD-SAFE MARSHALING

Figure 2: Concurrent requests on a servant

Warehouse
T1 Servant T2

getProductinfo

marshal

I
I
I
|
T
I
I updateCost
I
I
I
I
I
I
I
I

the return value. Next, T2 invokes updateCost on the same prod-
uct. Finally, T1 marshals the ProductInfo value.

Depending on the server implementation, it is possible for the
ProductInfo value held by T1 to be modified by T2 before T1
has a chance to marshal it. Even worse, the ProductInfo value
may be in an inconsistent state at the time it is marshaled.

For example, here is one implementation of a Warehouse ser-
vant that exhibits this problem:

// Java
public class Warehousel extends WarehouseDisp
{
public synchronized ProductInfo
getProductInfo (String id, Current curr)
{
ProductInfo info =
(ProductInfo) products.get (id);
return info;

}

public synchronized void
updateCost (String id, float cost,
float markup, Current curr)

{

ProductInfo info =

(ProductInfo) products.get (id);
info.cost = cost;
info.markup = markup;

}

private HashMap products = new HashMap() ;
}

It’s not difficult to imagine an unfortunate sequence of events in
which T1 begins marshaling the struct and manages to encode the

Issue 2, May 2005

cost member before the thread is interrupted and T2 is scheduled.
The updateCost operation in T2 is able to modify the cost and
markup members, then T1 is scheduled again and marshals the
new value for the markup member. The ProductInfo struct
received by the client contains the old value for cost and a new
value for markup, which could result in some problematic miscal-
culations.

Synchronizing the methods gives this implementation the
appearance of thread safety, but does not actually provide it:
getProductInfo returns a value by reference to which it no lon-
ger controls access. In other words, the synchronization protecting
the servant’s state lasts only as long as get ProductInfo; once
the method returns, the calling thread must still marshal the return
value, but that thread has no way of synchronizing access to it. If it
is possible for another thread to modify the value held by the first
thread, as in this example, then getProductInfo can potentially
return a value in a non-deterministic state.

All of the Slice language mappings suffer from this issue, but
to varying degrees. In C++, only instances of Slice classes are af-
fected. In Java, C#, Visual Basic, and Python, this problem affects
Slice sequences, dictionaries, structs, and classes. (The mapping
for structs can be altered in C# and Visual Basic to have value
semantics instead of reference semantics; structs using this alterna-
tive mapping are not affected.)

Data members of these types are also affected recursively. For
example, suppose a Slice operation returns a struct containing a
class data member. Although in C++, the struct is not affected, its
class data member is still susceptible to the problem.

Solution #1 - Return Copies

One way to solve the problem is to return a copy of the servant’s
state. Assuming the data is copied using synchronization to protect
its integrity, it can be marshaled at some later point by the calling
thread without the risk of modification by other threads.

As you might suspect, there are several disadvantages to this
strategy. First, excessive copying can have an adverse impact on
throughput for performance-sensitive applications. Second, the
implementation must return deep copies in order to avoid the same
thread-safety issue for nested data members. Finally, writing the
code for creating deep copies is both tedious and error-prone, as it
requires careful tracking of changes to the Slice definitions.

As an example, here is an implementation of getProductInfo
that correctly copies the ProductInfo struct:

// Java
public synchronized ProductInfo
getProductInfo (String id, Current curr)
{
ProductInfo info =
(ProductInfo) products.get (id);
ProductInfo result = null;

Connections

ZeroC’s Newsletter for the Ice community

THREAD-SAFE MARSHALING

result = (ProductInfo)info.clone();
result.loc = (Location)info.loc.clone();

}
catch (CloneNotSupportedException ex)

{

assert (false);

}

return result;

}

Notice that we are now cloning the ProductInfo value, as well
as its Locat ion member. If additional reference data members
are added to the ProductInfo struct in the future, we would have
to remember to update this method as well as everywhere else we
were making a copy of it.

Solution #2 - Copy on Write

Rather than returning a copy of the servant’s state, we can make
the state immutable. In every operation that modifies the state, we
replace the state value with a shallow copy containing the updated
value, as shown below:

// Java
public synchronized ProductInfo
getProductInfo (String id, Current curr)
{
ProductInfo info =
(ProductInfo) products.get (id);
return info;

}

public synchronized void
updateCost (String id, float cost,
Current curr)

float markup,

{
ProductInfo info =
(ProductInfo) products.get (id);

try
{

ProductInfo info2 =
(ProductInfo)info.clone () ;
info2.cost = cost;
info2.markup = markup;
_products.put (id, info2);
}
catch (CloneNotSupportedException ex)
{

assert (false);
}
}

In updateCost, we clone (shallow copy) the original value, up-
date the members, and then replace the entry in the map. If another
thread simultaneously invokes get ProductInfo, the returned
ProductInfo object can be safely marshaled by the Ice runtime
because it is never modified.

Connections

This approach is more efficient than the first solution because
it doesn’t require copying in nonmutating operations, but it still
requires discipline in mutating operations to ensure that the immu-
table quality of the state members is preserved.

Solution #3 - AMD

The thread-safety issue arises because the marshaling of return val-
ues and out-parameters happens outside the servant’s control. We
can regain this control by using Asynchronous Method Dispatch
(AMD) instead. First, we must annotate our Slice definition of
getProductInfo with metadata that directs the translator to use
AMD:

// Slice
interface Warehouse
{
["amd"] ProductInfo getProductInfo(string id);
void updateCost (string id, float cost,
float markup) ;
}i

Then we update our servant accordingly:

// Java
public synchronized void
getProductInfo_async (
AMD Warehouse getProductInfo cb,
String id,
Current curr)

ProductInfo info =
(ProductInfo) products.get (id);
cb.ice invoke (info);

}

public synchronized void
updateCost (String id, float cost,
Current curr)

float markup,

{
ProductInfo info =
(ProductInfo) products.get (id);
info.cost = cost;
info.markup = markup;

}

AMD is normally used in situations where the servant needs to
delay its response to the client without blocking the calling thread,
but we are using it here because it allows us to explicitly marshal
the response inside a synchronization block, thereby preventing
any other operation from simultaneously modifying the state.

Summary

Thread safety merits careful attention in all but the most trivial of
Ice applications. Although the range of affected Slice types varies
with language mappings, it is important to keep this issue in mind
during development in order to avoid subtle problems after deploy-
ment.

Issue 2, May 2005

ZeroC’s Newsletter for the Ice community

Ice AND GRID COMPUTING

Ice and Grid Computing

Bernard Normier, Senior Software Engineer
Benoit Foucher, Senior Software Engineer

According to Webopedia, “grid computing harnesses unused pro-
cessing cycles of all computers in a network for solving problems
too intensive for any stand-alone machine” [1]. Grid computing is
now often used in a broader sense: achieving application scal-
ability by exploiting many commodity servers instead of a few big
boxes [2].

Ice provides a sound and easy-to-use distributed object infra-
structure, and is a smart choice for many kinds of distributed appli-
cations, including traditional grid software for High Performance
or High Throughput Computing [3]. The MG project [4]—a light-
weight Grid for High Energy Physics—is a nice example of how
Ice can be adopted to develop practical solutions in this domain.

ZeroC is approaching grid computing from a somewhat different
and wider angle: our focus is on the deployment, execution, and
monitoring of Ice servers on a large number of computers. These
servers may perform long computations requested by a single cli-
ent, serve thousands of clients, or anything in between. You decide
how to exploit the grid, and let Ice handle many of the nitty-gritty
details.

The next major Ice release will introduce a new location and
deployment service named IceGrid. If you are already familiar with
IcePack, don’t worry:
IceGrid will pro-

plication aware of the new node. IceGrid can dramatically simplify
these tasks:

* IceGrid can copy server binaries from a central repository
(IcePatch server) to the desired computers. (See Figure 1.)

* Identical servers are easy to deploy on the grid. Using
IceGrid’s template feature, deploying a new server instance
requires minimal effort.

* A set of servers can be configured as replicas of each other.
When IceGrid resolves an indirect proxy for an object hosted
on replicated servers, it can return a direct proxy with the
endpoint of just one server—for example the endpoint of the
server with the lowest load—or a direct proxy with the end-
points of several servers. For each set of replicas, IceGrid lets
you choose from a number of load-balancing strategies. (See
Figure 2.)

» Servers can be pre-deployed on a computer before it joins the
grid. When the IceGrid node starts up, the necessary binaries
are transferred and the servers are ready to run.

IceGrid nodes provide performance data about their hosts, such

as CPU and memory usage, network statistics, and more. This
functionality is built into IceGrid, sparing you the need to deploy
and configure other software packages, such as SNMP, for this
purpose. Applications can use the performance data in a variety of
ways: in the implementation of a custom load-balancing strategy,
for automatic deployment of new servers when the load reaches a
given threshold, to create historical graphs of the grid utilization,
and so on.

Figure 1: IceGrid/IcePatch integration

vide all of IcePack’s 1

functionality and much
more. Like IcePack,
IceGrid consists of one
registry daemon and
any number of node
daemons. Adding a
new computer to your -

IceGrid Node
(IcePatch2 Client)

ServerA/bin/server
lib/libService.so
conf/data.xml L]

| |
lceGrid Node lceGrid Node
(IcePatch2 Client)

(IcePatch2 Client)
ServerA/bin/server
-|: lib/libService.so
conf/data.xml -

ServerA/bin/server
lib/libService.so
conf/data.xml

(Ice-based) grid is a A 7'}

simple matter of in- :

stalling and starting an Download . Dep|0y

IceGrid node daemon. binaries : servers
Once you’ve v .

installed the IceGrid
node daemon on a new
computer, how do you
incorporate it into your
application? You first
transfer your server
binaries to the new
computer, and then

ServerA/bin/server

ServerB/...

lib/libService.so
conf/data.xml

lcePatch2 Server

<server name=ServerA>
<adapter name="...”/>

</server>

<server name=ServerB/>

lceGrid Registry

you make your ap-

Issue 2, May 2005

Connections

ZeroC’s Newsletter for the Ice community

FAQ CORNER

Figure 2: Replication

IceGrid Locator
Adapterld Server Endpoints
theAdapter | Server-1 | tcp -p 45670
theAdapter | Server-2 | tcp -p 25670
theAdapter | Server-3 | tcp -p 35670
Server-1 :
-p 25670:tcp -p 35670
Adapgﬁ:‘i":’_ter;ﬁiapter % .
Endpoints: tcp -p 25670 | .” M
Server3d | . hello = hello@theAdapter
Adapmapter hello->sayHello()
Endpoints: tcp -p 35670

Finally, IceGrid includes two administrative tools, a command-
line utility that is appropriate for simple commands and scripting,
and a cross-platform graphical interface suitable for interactive use
and server/node monitoring.

Please note that the features outlined above are subject to change
before release. We appreciate your feedback: please post your com-
ments on our forum at http://www.zeroc.com/vbulletin/.

[1] Webopedia, Grid computing definition. http://www.webopedia.
com/TERM/g/grid computing.html.

[2] eWeek. 2004. ebay: Sold on Grid. http://www.eweek.com/
article2/0,1759,1640234,00.asp.

[3] University of Wisconsin-Madison. High Throughput Comput-
ing. http://www.cs.wisc.edu/condor/htc.html.

[4] Nicolai Smirnov. 2005. MG: Lightweight Grid for HEP. http://
nsmirnov.home.cern.ch/nsmirnov/mg/mg.html.

Connections

FAQ Corner

In each issue of our newsletter, we present a few frequently-asked
questions about Ice. The questions and answers are taken from our
support forum at http://www.zeroc.com/vbulletin/ and deal with
specific problems that developers tend to encounter, and for which
the answer may not be readily apparent from reading the documen-
tation. We hope that you will find the hints and explanations in this
section useful.

How can a oneway request be lost?
°

Unlike datagrams, which use the unreliable UDP protocol, oneway
invocations in Ice use the reliable TCP/IP protocol, just like
twoway invocations. (Note that reliable does not mean infallible—
see Tip 9 in Effective TCP/IP Programming by Jon Snader.)

Because oneway invocations use TCP/IP, you might be tempted
to think that they are just as reliable as twoway invocations: for a
twoway invocation, it is guaranteed that the request is either deliv-
ered or, if it is not delivered (or the client cannot be certain about
the delivery status), the client receives an exception.

However, for oneway invocations, it is impossible to provide a
guarantee that is as strong as for twoway invocations. The dif-
ference is that oneway invocations are unreliable in the face of
connection closure (either accidental or deliberate). To understand
why, let us first consider how twoway invocations are processed.

When a client sends a twoway request to a server, the Ice run-
time constructs a protocol message for the request and writes the
request data to the client’s TCP/IP stack to be sent to the server.
The client-side runtime then waits until one of the following oc-
curs:

» The runtime receives a reply from the server indicating that
the request was processed and worked OK.

» The runtime receives an exception reply from the server indi-
cating that the request could not be processed. This can hap-
pen for a number of reasons. For example, the target object
may not exist, or the operation implementation may throw a
user exception.

* The runtime receives an error from the TCP/IP stack indicat-
ing that something went wrong. For example, the server may
have deliberately closed its end of the connection, or the
network may have been physically damaged (for example, by
someone tripping over a network cable and pulling the plug).

It is the third case that is relevant to the difference between twoway

Issue 2, May 2005

ZeroC’s Newsletter for the Ice community

http://www.zeroc.com/vbulletin/
http://www.eweek.com/article2/0,1759,1640234,00.asp
http://www.eweek.com/article2/0,1759,1640234,00.asp
http://www.cs.wisc.edu/condor/htc.html
http://nsmirnov.home.cern.ch/nsmirnov/mg/mg.html
http://nsmirnov.home.cern.ch/nsmirnov/mg/mg.html
http://www.zeroc.com/vbulletin/

FAQ CORNER

and oneway requests.

For twoway requests, the following semantics apply:

« If the server closes a connection deliberately, the client
receives a close connection message from the server. The Ice
protocol rules ensure that the Ice runtime can safely retry any
requests for which it has not yet received a response without
violating at-most-once semantics. Only if a request cannot be
delivered after retrying it does the Ice runtime propagate an
exception to the application code.

+ If the connection is closed forcefully (such as when the server
crashes or there is a network problem), the Ice runtime either
notices the closure because the local TCP/IP stack reports an
error, or it times out after a period of inactivity. If the opera-
tion is idempotent or nonmutating, the runtime retries the
failed request. If that attempt also fails, or if the operation
is a normal (not idempotent or nonmutating) operation, the
runtime raises an exception with the application code.

These semantics mean that, for twoway requests, the client ap-
plication code can rely on getting an exception if something goes
wrong; not getting an exception means that the invocation worked.

Now consider the same two connection closure scenarios for
oneway invocations.

For oneway invocations, the client-side runtime does not wait
for a response to a request. Instead, it simply writes the protocol
message to the local TCP/IP stack and returns control to the call-
ing application code. This means that, as a rule, the request is still
buffered in the client’s local TCP/IP stack by the time a oneway
invocation completes on the client side. (Note that this also applies
for large requests that do not fit into the TCP/IP stack without be-
ing split into smaller segments: for such requests, the Ice runtime
blocks until the TCP/IP stack has accepted all segments, but some
of these segments may still be buffered when control returns to the
application code.)

In the first scenario, in which the server closes the connection
deliberately, there is no way for the client-side Ice runtime to notify
the application code that a request may have been lost because the
thread of control for the request has long since been passed back
to the application. This means that the client application code sees
a successful completion of a oneway invocation even though the
actual request for that invocation never made it into the network.
Moreover, subsequent calls may very well succeed, because the
Ice runtime will transparently open a new connection to the server
once the application sends another request (oneway or twoway).

In the second scenario, in which the connection is closed force-
fully, there is also no way for the Ice runtime to notify the applica-
tion code, for the same reasons. However, in this case, it is more
likely that at least subsequent oneway calls will raise an exception,
because it is unlikely that the runtime will succeed in establishing a
new connection when it retries (unless you have redundant copies
of the server or the server is restarted prior to the retry).

Issue 2, May 2005

All this means that oneway invocations are unreliable in the face
of connection closure and simply cannot provide the same reli-
ability guarantees as twoway invocations. There is little you can do
about forceful connection closure, but you can at least take steps
with respect to graceful connection closure to improve the reli-
ability of oneway invocations. There are two main considerations:
active connection management (ACM) and server shutdown.

Active Connection Management and Oneways

Active connection management is a feature of the Ice runtime that
allows connections to be reclaimed automatically and transpar-
ently: the runtime closes connections once they have been idle

for some time and re-establishes them as needed. If you must use
oneway invocations for efficiency reasons, but cannot afford to
silently lose them, you must control ACM explicitly.

On the client side, ACM does not interfere with sending oneway
invocations. This is because the runtime resets the idle timer for a
connection every time a oneway invocation is sent. (The only way
ACM could interfere here is if you were to set the timeout so short
that a single large oneway invocation cannot be buffered within the
ACM timer interval.)

However, on the server side, ACM really gets in the way: the
ACM thread in the server can close a connection at any time with-
out warning, leading to the loss of oneways we mentioned previ-
ously. It follows that, if you need reliable oneway invocations, you
must disable ACM on the server side. You can do this by setting
the property Ice.ACM.Server to zero.

Server shutdown and Oneways

If the server shuts down deliberately (by calling shutdown on its
communicator), the Ice runtime closes all incoming connections
for that communicator (once all executing operation invocations
have finished). Of course, this means that clients can lose buffered
oneway invocations just as if ACM had closed the server end of a
connection. If your application cannot tolerate the loss of oneway
invocations, you must somehow make sure that the server does not
shut down while clients can have buffered oneway requests. How
to do this is up to your application—a common solution is to have
the server notify its clients that it is about to go away. Each client
then sends a twoway confirmation message back to the server.
Once the server has received (and replied to) all of these confirma-
tion messages, it can shut itself down. And, conversely, completion
of the confirmation message in the client without an exception
guarantees that all previously buffered oneway invocations have
been sent because a twoway invocation cannot “overtake” oneway
invocations that were buffered previously.

Note that all of this is necessary only in the following cases:

 The server is restarted once shut down, and manages to both
shut down and restart in between two successive oneway
invocations by a client.

Connections

ZeroC’s Newsletter for the Ice community

FAQ CORNER

* You have redundant copies of the server and proxies for ob-
jects in these servers have multiple endpoints.

If neither of these cases applies, the client will at least receive an
exception when it tries to send subsequent oneways, and therefore
receive an indication that something is not working correctly.

Batch Oneways

Everything we said about the reliability of oneways also applies to
batch oneways. The only difference is that, if a batch oneway mes-
sage is lost, all invocations in the same batch are lost with it.

Why can oneway requests block?

If the operation has a void return type and does not have out-pa-
rameters or an exception specification, you may be tempted to
simply call the operation via a oneway proxy, thinking that this
makes it impossible for the client to block when it invokes the
operation. Unfortunately, this is incorrect: oneway operations can
indeed block.

There are two scenarios that can cause a oneway invocation to
block the caller:

Connection Establishment

If no connection to the target server for an invocation is currently
established, the Ice runtime will transparently open a connection
(whether the call is oneway or twoway). Connection establishment
forces the Ice runtime to wait for a connection validation mes-
sage from the server, as required by the Ice protocol. If the server
is slow to respond, has run out of threads to process its incoming
connection request, or misbehaves in other ways, an invocation
(including a oneway invocation) can block. If you set a timeout,
the call will throw a ConnectionTimeoutException once the timer
expires; without a timeout, the call can block indefinitely. Regard-
less, connection establishment is identical for oneway and twoway
operations and can block the client.

Note that you can mitigate the problem somewhat by forcing
a connection to be established initially, for example, by disabling
ACM and sending an ice_ping() before you send a oneway invoca-
tion. However, because connections may be closed due to network-
ing problems, this only makes it less likely for a oneway call to
block, but does not prevent it, because, during a retry of a failed
invocation, the Ice runtime may attempt to re-establish a connec-
tion and block at that point.

Connections

TCP/IP Buffer Limitations

The client’s local TCP/IP stack has a limited amount of buffer
space to accept data. If a oneway request is too large to fit into

the remaining TCP/IP buffer space, the kernel suspends the caller
in its write system call on the socket until enough buffer space
becomes available. The remaining buffer space can be consumed
by previously buffered requests or even by a single request, if it is
large enough. Either way, a oneway invocation can block until the
TCP/IP stack has removed enough data from its buffers for the cur-
rently executing request to be buffered, at which point the oneway
invocation returns the thread of control to the application code.

How can oneway requests arrive out of
order?

Sequentially sent oneway requests cannot arrive out of order, but
the server may dispatch them out of order.

Assuming that oneway requests are not sent in parallel by mul-
tiple threads, and that all oneway requests use the same connection
to the server (which is usually the case, unless different protocols
or timeouts are used), then the client-side Ice runtime ensures that
the protocol messages for these requests are sent in order.

However, if the server employs a thread pool, then the server-
side Ice runtime will dispatch oneway requests in parallel, up to
the maximum number of threads that is configured for the thread
pool. It is therefore possible for oneway requests to be dispatched
in an order that differs from the order in which they were received,
depending on how the operating system schedules threads.

Out-of-order dispatch cannot happen with twoway invocations.
For sequentially-sent twoway invocations, the client always waits
until it has received a response from the server for an outstand-
ing twoway before it sends another twoway. Since the server only
sends a response once it has completed dispatching of the twoway
call (or at least started dispatching, if the server uses asynchronous
message dispatching), twoways cannot be dispatched out of order.

There are three ways to avoid out-of-order dispatching of
oneway requests. The first way is to simply configure only one
thread for the server-side thread pool. With only one thread, no
requests can be dispatched in parallel. The second option is to use
the thread-per-connection concurrency model. In this case, each
connection has a single, dedicated thread, so requests that arrive
over the same connection cannot be dispatched in parallel. Finally,
you can use batched oneways. All oneway requests from a single
batch are guaranteed to be dispatched in order by the same server
thread, regardless of the number of threads in the thread pool.

Issue 2, May 2005

ZeroC’s Newsletter for the Ice community

