
Connections
ZeroC’s Newsletter for the Ice Community

Page � Issue 13, April 2006

Connections
ZeroC’s Newsletter for the Ice Community Issue Number 13, April 2006

Community Spirit
A few weeks ago, I was involved in
a discussion of what makes software
viable. Predictably, the word “stan-
dardization” popped up yet again.
Clearly, standardization is a good
thing. Just think of the success of the
Single Unix Specification published by
the Open Group, or the importance of
the Request for Comments published

by the Internet Engineering Task Force. However, not everything is
standardized. For examples, look at the Windows world: there are
some things that are standardized (such as C#, which is standard-
ized by ECMA) but, by and large, the Windows standard is what-
ever the latest version of Windows happens to be doing at the time.

What I found interesting in the discussion was that standards
were not lauded because they make things so much easier or better
(although they often do). Instead, many of the arguments were
driven by fear: “If my vendor starts charging too much…”, “I need
to protect my investment”, and “No-one ever gets fired for buy-
ing IBM or Microsoft” were recurring phrases. There was a strong
theme that, without a standard, software is somehow less viable
than with a standard. (For a counter-example, again look at the
Windows world, which most people would agree is an eminently
viable one.)

All this got me to thinking about what makes software viable.
Standardization is one contributing factor, but there are others.
Technical excellence, ease of use, price, availability, documenta-
tion, support quality, feature set, and marketing all contribute to
the viability of software. However, none of these factors seems
decisive. (I imagine that most of us know of technically excellent
products that have disappeared without a trace; likewise, there are
successful products that not many people would call technically
excellent…)

So, what makes software viable then? To me, there is one over-
riding factor that contributes more than all the others combined:
software community. Software is viable as long as there is an active
and vibrant developer community. Proof of this can be found in
many places, but particularly in the open source and shareware
world: much open source and shareware ended up being very
successful, despite having no standardization, no budget, limited
platform support, no professional documentation, patchy support,
and no marketing whatsoever (at least not initially). Despite that,
the software is viable because it meets a real need and because its
users care about it enough to keep using and improving it.

In this vein, it is good to see the ever-increasing activity in our
user forum and to see you, the developers using Ice, help each other

with information, porting tips, bug hunting, architectural issues,
and more. Here at ZeroC, we like this very much. For one, it means
that we do not have to do all the heavy lifting by ourselves but,
more importantly, it means that Ice enjoys an active and grow-
ing user community. And that user community is important, more
important than any other factor. So, keep it up—everyone is better
off for it.

And, speaking of community, November this year will see the
7th International Middleware Conference take place in Melbourne.
I am program co-chair of this conference (and I will also pres-
ent a tutorial on middleware design). I see the conference as an
ideal place to strengthen the Ice community and I encourage you
to attend. Keep an eye on the conference web site—the call for
papers is about to close, but the conference will host a number of
workshops with a later closing date where you can present your
middleware experiences, participate in discussions with other
developers, and learn new tricks of the trade. I want to get to know
more about you, the Ice community, and I want to know about the
things you do with Ice. So I hope to see you there, maybe over a
beer (or three): software and beer are both better when enjoyed in a
community!

Michi Henning
Chief Scientist

Issue Features

Integrating Ice with a GUI: Part II
In the second of a four part series on integrating Ice with a GUI
Matthew Newhook introduces a number of improvements on the
techniques introduced in the first article.

Ice-E 1.1: What’s New?
Brent Eagles and Dwayne Boone introduce some of the new
features in Ice-E 1.1, and discuss performance improvements
included in the release.

Contents
Integrating Ice with a GUI: Part II .................................. 2

Ice-E 1.1: What’s New? ... 8

FAQ Corner ... 14

http://www.opengroup.org/onlinepubs/007908799/
http://www.opengroup.org
http://www.rfc-editor.org/rfc.html
http://www.ietf.org/
http://www.ecma-international.org/publications/standards/Ecma-334.htm
http://www.ecma-international.org
http://www.zeroc.com/vbulletin
http://2006.middleware-conference.org

Connections
ZeroC’s Newsletter for the Ice Community

Page � Issue 13, April 2006 Page �Issue 13, April 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page �Issue 13, April 2006 Connections
ZeroC’s Newsletter for the Ice Community

Integrating Ice with a GUI: Part II
Matthew Newhook, Senior Software Engineer

Introduction
The previous article in this series (Integrating Ice with a GUI,
Issue 12 of Connections) outlined a method to send twoway re-
quests without blocking a UI event processing thread. This article
expands on that idea with a number of new features, including
the addition of a thread to send oneway requests. Before reading
this article, I recommending that you familiarize yourself with the
previous article. You should also have a look at the FAQs in Issue 2
of Connections—they outline various issues you will come across
when sending oneway requests.

Sending Multiple Requests in Parallel
The current call queue maintains a strict ordering of requests, that
is, it waits for Call::execute to return before executing another
call. However, we may want a queue that sends multiple calls in
parallel. We will look at two possible ways to implement this.

Asynchronous Invocations
One method for attaining more parallelism is to have the call queue
use asynchronous method invocation (AMI) instead of synchro-
nous invocation. With asynchronous invocations, the processing of
the reply is decoupled from the sending of the request. This means
that the call queue will continue to send requests before replies are
received for previously-sent requests. (If you are not familiar with
asynchronous invocation, you may want to read Asynchronous
Programming in Issue 4 of Connections.)

Consider three queued requests, A, B, and C. A call queue that
uses asynchronous invocations guarantees that the three calls are
sent in order, that is, A is sent before B, which is sent before C.
However, if all three requests are sent to the same server, due to
the vagaries of thread scheduling, there is no guarantee as to the
order in which the requests will actually be dispatched by the
server. In addition, because each request is sent before the reply
for the previous request is received, obviously B cannot depend on
anything done by A, and C cannot depend on anything done by B.
This means that an asynchronous queue implementation is useful
only for “stand-alone” requests that do not depend on side effects
of earlier requests.

Here is an example implementation of an asynchronous queue.
First, we need to add metadata to the Slice operation to instruct the
compiler to generate asynchronous stubs:

// Slice
interface Hello
{
	 ["ami"] nonmutating void sayHello();
	 //...
};

Next, we need to implement the AMI callback. This requires im-
plementing two methods, ice_response (which is called by the
Ice run time for a successful reply) and ice_exception (which is
called by the Ice run time if the operation raises an exception). Our
implementation of ice_exception will notify the queue when an
operation completes with an exception. To inform the application
code, the queue can remember the exception and throw it the next
time the application adds a message to the call queue. The easiest
way to implement this is to pass the queue to the Call::execute
method, which can then pass the queue to the AMI object for later
use:

// C++
class AMI_Hello_sayHelloI :
	 public AMI_Hello_sayHello
{
public:
	 AMI_Hello_sayHelloI(
		 const CallQueuePtr& queue) :
		 _queue(queue)
	 {
	 }

	 virtual void
	 ice_response()
	 {
	 }

	 virtual void
	 ice_exception(const Exception& e)
	 {
		 _queue->error(e);
	 }

private:
	 const CallQueuePtr _queue;
};

The call implementation uses the asynchronous version of the
invocation:

// C++
void
SayHelloCall::execute(const CallQueuePtr& queue)
{
	 _hello->sayHello_async(
		 new AMI_Hello_sayHelloI(queue));
}

With this code, execute does not wait for the result of the
sayHello invocation to be returned by the server. Unless some-
thing has gone wrong and the AMI call blocks due to slow con-
nection establishment or a TCP/IP buffer overflow, execute will

Integrating Ice with a GUI

http://www.zeroc.com/newsletter/issue12.pdf
http://www.zeroc.com/newsletter/issue2.pdf
http://www.zeroc.com/newsletter/issue4.pdf

Connections
ZeroC’s Newsletter for the Ice Community

Page � Issue 13, April 2006 Page �Issue 13, April 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page �Issue 13, April 2006 Connections
ZeroC’s Newsletter for the Ice Community

return immediately and the results of the sayHello operation will
be delivered via ice_response or ice_exception once they
are available.

The call queue itself only needs two changes, namely passing
the queue to the execute method, and a new error method:

// C++
void
CallQueue::run()
{
	 while(true)
	 {
		 // ...
		 try
		 {
			 req->execute(this);
		 }
		 catch(const Exception& e)
		 {
			 error(e);
		 }
	 }
}

void
CallQueue::error(const Exception& e)
{
 	 Lock sync(*this);
	 _exception = auto_ptr<Exception>(
		 e.ice_clone());
	 _destroy = true;
	 notify();
}

Thread Pool
Another option to attain more parallelism is to use a thread pool.
Using a thread pool in the call queue means that the call implemen-
tations can use either synchronous or asynchronous invocations
and still attain parallelism when calling the server. The call queue
maintains a set of worker threads that each wait to remove a call
from the queue and then subsequently execute the call. As for the
asynchronous implementation, the worker thread notifies the queue
if an invocation raises an exception:

// C++
class CallQueueWorker : public Thread
{
public:
	 CallQueueWorker(const CallQueuePtr&);
	 virtual void run();
private:
	 CallQueuePtr _queue;
};
typedef Handle<CallQueueWorker>
	 CallQueueWorkerPtr;

CallQueueWorker::CallQueueWorker(
	 const CallQueuePtr& queue) :
	 _queue(queue)
{
}

void
CallQueueWorker::CallQueueWorker::run()
{
	 while(true)
	 {
		 CallPtr req = _queue->next();
		 if(!req)
		 {
			 return;
		 }
		 try
		 {
			 req->execute();
		 }
		 catch(const Exception& e)
		 {
			 _queue->error(e);
		 }
	 }
}

The worker calls CallQueue::next to retrieve the next call to be
processed. (In the event that the queue has been destroyed, next
returns a nil event.) If an invocation raises an exception, the queue
is notified via a call to CallQueue::error.

The call queue, instead of being a thread itself, now has a list of
worker threads. This is managed as follows:

// C++
class CallQueue : public Shared,
	 public Monitor<Mutex>
{
	 // ...
	 void join();
	 void start();
private:
	 friend class CallQueueWorker;
	 void error(const Exception&);
	 CallPtr next();
	 std::list<CallQueueWorkerPtr> _workers;
};

void
CallQueue::start()
{
	 Lock sync(*this);
	 for(int i = 0; i < 2; ++i)
	 {
		 CallQueueWorkerPtr worker =
			 new CallQueueWorker(this);
		 worker->start();
		 _workers.push_back(worker);
	 }
}

Integrating Ice with a GUI

Connections
ZeroC’s Newsletter for the Ice Community

Page � Issue 13, April 2006 Page �Issue 13, April 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page �Issue 13, April 2006 Connections
ZeroC’s Newsletter for the Ice Community

void
CallQueue::join()
{
	 Lock sync(*this);
	 list<CallQueueWorkerPtr>::const_iterator p;
	 for(p = _workers.begin();
		 p != _workers.end();
		 ++p)
	 {
		 (*p)->getThreadControl().join();
	 }
	 _workers.clear();
}

The start method starts all worker threads, and join waits for
the worker threads to terminate. The join method calls clear on
the set of worker threads once it has joined with them; this drops
the last reference to each thread and causes its destructor to run.

The next method first locks the monitor and then waits for
either an event to be added, or the queue to be destroyed. If the
queue is not destroyed, it returns the first event from the queue:

// C++
CallPtr
CallQueue::next()
{
	 Lock sync(*this);
	 while(!_destroy && _req.empty())
	 {
		 wait();
	 }
	 CallPtr req;
	 if(!_destroy)
	 {
		 req = _req.front();
		 _req.pop_front();
	 }
	 return req;
}

With a thread pool, no guarantee for the order in which requests
are sent can be made at all. If the application queues up three
events A, B, and C, the requests can be dispatched in any order:
although the events will be picked up by the threads in the pool
in the correct order, the thread scheduler might run the thread that
picked up event B and dispatch the event before it schedules the
thread that picked up event A. This means that, as for the AMI
example, B cannot depend on any side effects of A.

A more flexible implementation of the call queue would be to
specify the size of the thread pool when the queue is started. With
a pool size of one (as long as the queue does not use AMI), the
queue guarantees strict ordering; with a pool size larger than one,
the ordering is no longer guaranteed.

You can find a complete example of the AMI and thread pool
implementations of the call queue in the source code that accompa-
nies this article.

Oneway Message Queue
Consider an application that regularly sends oneway status mes-
sages to a server, as well as twoway messages. If oneway messages
are placed into the same queue as twoway messages, the oneway
messages may end up being delayed by twoway messages yet to
be processed. If the processing time for some twoway is long, this
delay may be unacceptable. We can deal with this by dispatch-
ing oneway and twoway messages concurrently. An easy way to
achieve this is to use separate queues for oneway and twoway
calls. (Note that processing concurrent requests in a server requires
the server to have as many threads in its thread pool as there are
concurrent requests; if more requests arrive than can be concurrent-
ly processed, they are delayed and executed as threads for previous
requests are returned to the pool.)

Here is how we can use two queues to send oneway and twoway
requests concurrently:

// C++
twowayQueue = new CallQueue();
twowayQueue->start();
onewayQueue = new CallQueue();
onewayQueue->start();

While there is nothing wrong with this code, it ignores an interest-
ing optimization.

Batched Invocations
Ice supports a sending mode known as batched invocation for
oneway messages. Normally, when a client invokes an opera-
tion on a oneway proxy, the Ice run time sends the message to
the server immediately. However, sending the message requires a
separate write to the network, which is expensive. (Each oneway
message also gets its own protocol header, which consumes a bit
of bandwidth.) If a client frequently sends small oneway messages,
the cost of repeatedly trapping into the kernel and the extra band-
width can be noticeable.

A solution to this problem is to use batched invocations. Instead
of sending each oneway invocation as a separate protocol message,
you can group several oneway messages together and send them
as a single protocol message. This avoids multiple writes to the
network and the single message uses only one protocol header.

To send batched oneway messages, you need to call either
ice_batchOneway or ice_batchDatagram on the proxy for
the target object. Either method returns a new proxy to the same
object, but that proxy sends oneway invocations in batches, for
example:

// C++
HelloPrx hello = ...;
HelloPrx batchHello =
	 HelloPrx::uncheckedCast(
		 hello->ice_batchOneway());

Integrating Ice with a GUI

http://www.zeroc.com/newsletter/issue13/qt2.zip

Connections
ZeroC’s Newsletter for the Ice Community

Page � Issue 13, April 2006 Page �Issue 13, April 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page �Issue 13, April 2006 Connections
ZeroC’s Newsletter for the Ice Community

Calling on the batchHello proxy now sends a batched oneway
message.

// C++
batchHello->sayHello();

Invoking on a batch oneway proxy buffers the invocation inside
the Ice run time instead of sending it immediately. To force all
batched invocations that have accumulated to be sent, you need to
call Ice::Communicator::flushBatchRequests:

// C++
batchHello->ice_communicator()
	 ->flushBatchRequests();

This causes all buffered oneway messages to be sent as a single
protocol message. On the server side, batched messages provide
additional guarantees:

•	 A single thread will dispatch all oneway messages contained
in the batch.

•	 The messages in the batch will be dispatched in the order they
were buffered on the client side.

•	 All messages in the batch are delivered, or none.

Note that, for batched datagram invocations, you must take care:
if the size of the protocol message exceeds the PDU size of the
network, it becomes more and more likely for the UDP message
to be lost due to fragmentation. Clearly, the more messages are
batched together, the more likely this is to happen. Also note that
UDP messages are limited to 65507 bytes (65535 is the maximum
size of an IP datagram minus 20 bytes for the IP header and 8 bytes
for the UDP header), so you must take care to stay below this limit.

If you send a regular oneway datagram message and ex-
ceed the maximum UDP message size, the Ice run time sends
a DatagramLimitException. However, for batched oneway
datagram messages that exceed the maximum size, the Ice run time
throws away the entire batch, without raising an exception. (How-
ever, the run time logs a warning in this case.)

A Batching Call Queue
We can create a call queue that takes advantage of batching. The
basic approach is to send all oneway requests in batches and to
flush these requests at regular intervals. We can create a new class
OnewayCallQueue to do this. Its public interface is almost the
same as for CallQueue. The only difference is that the constructor
takes an Ice::Communicator argument that we use to flush the
batched messages:

// C++
class OnewayCallQueue : public Thread, public
Monitor<Mutex>
{
public:
	 OnewayCallQueue(const CommunicatorPtr&);

	 void add(const CallPtr&);
	 void destroy();
	 virtual void run();

private:
	 const CommunicatorPtr _communicator;
	 bool _destroy;
	 std::list<CallPtr> _req;
	 std::auto_ptr<Exception> _exception;
};
typedef Handle<OnewayCallQueue>
 OnewayCallQueuePtr;

Once again, add enqueues a message, and destroy instructs the
queue to terminate.

Let’s take a look at the implementation of the queue. The con-
structor, add, and destroy are the same as for the non-batching
queue, with the exception of the communicator argument, so let’s
go straight to the thread implementation itself:

// C++
void
OnewayCallQueue::run()
{
	 while(true)
	 {
		 list<CallPtr> req;
		 {
			 Lock sync(*this);
			 while(!_destroy && _req.empty())
			 {
				 wait();
			 }
			 if(_destroy)
			 {
				 return;
			 }
			 req.splice(req.begin(), _req);
		 }
		 try
		 {
			 list<CallPtr>::const_iterator p;
			 for(p = req.begin();
				 p != req.end(); ++p)
			 {
				 (*p)->execute();
			 }
			 _communicator->flushBatchRequests();
		 }
		 catch(const Exception& e)
		 {
			 Lock sync(*this);
			 _exception = auto_ptr<Ice::Exception>(

Integrating Ice with a GUI

Connections
ZeroC’s Newsletter for the Ice Community

Page � Issue 13, April 2006 Page �Issue 13, April 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page �Issue 13, April 2006 Connections
ZeroC’s Newsletter for the Ice Community

				 e.ice_clone());
			 _destroy = true;
			 break;
		 }
	 }
}

The run method executes a loop that, on each iteration, waits to
be notified. The notification arrives either because a new item has
been added to the queue, or because the queue was destroyed. If
the queue is destroyed, run returns; otherwise, run copies the con-
tents of the queue using splice. (splice removes all elements
from the second argument, and inserts them at the iterator position
provided by the first argument; this is guaranteed to take constant
time without copying any data and so is highly efficient.) Finally,
run executes all requests in the queue (which adds them to the
current batch) and then calls flushBatchRequests to send the
batch. Note that the monitor is not locked for the duration of the
inner loop, so it is possible to add more requests while the queue is
still batching up the previous lot of requests.

To make a oneway call, the application once again creates a call
object, and adds it to the oneway call queue. It is the application’s
responsibility to ensure that the proxy is in fact a oneway batch
proxy. (The oneway call queue does not enforce this.) For this
example, we can add an assert statement to the constructor of
SayHelloCall to make sure that only a oneway batch proxy can
be passed:

// C++
class SayHelloCall : public Call
{
public:
	 SayHelloCall(const HelloPrx& hello)
	 : hello(hello)
	 {
		 assert(_hello->ice_isBatchOneway());
	 }

	 void execute()
	 {
		 _hello->sayHello();
	 }
private:
	 const HelloPrx _hello;
};
// C++
void
MyWidget::makeRpc()
{
	 HelloPrx hello = …;
	 _onwayCallQueue->add(new SayHelloCall(hello));
}

The above queue works, but is not all that useful. The problem
is that it sends each call as soon as it is enqueued (assuming the
queue itself is idle). Typically, sending a oneway message and
flushing its batch is very fast. As a result, the queue never gives the
calls a chance to accumulate and thus no batching occurs. The sim-

plest solution to this problem is to have the queue sleep for a while
after flushing each batch to allow calls to accumulate:

// C++
list<CallPtr> req;
// ...
list<CallPtr>::const_iterator p;
for(p = req.begin(); p != req.end(); ++p)
{
	 (*p)->execute();
}
_communicator->flushBatchRequests();
ThreadControl::sleep(Time::seconds(1));

The exact amount of time to sleep is application specific, and
should probably be a configuration parameter for a oneway call
queue. The only problem with this scheme is that, if the queue is
destroyed while its thread is asleep, it will not actually terminate
until the sleep has completed. For a one-second timeout this is
unlikely to be problematic; however, for longer timeouts, this idea
does not work very well. A solution to this problem is to ensure
that events are not dequeued for a minimum amount of time. This
can be implemented as follows:

// C++
void
OnewayCallQueue::run()
{
	 //...
	 list<CallPtr> req;
	 {
		 Lock sync(*this);
		 Time minEnd = Time::now() +
			 Time::seconds(1);
		 while(true)
		 {
 			 if(_destroy)
			 {
				 return;
			 }
			 Time diff = Time::now() – minEnd;
			 if(diff::toSeconds() >= 0)
			 {
				 if(!_req.empty())
				 {
					 break;
				 }
				 wait();
			 }
			 else
			 {
				 wait(diff);
			 }
		 }
		 req.splice(req.begin(), _req);
	 }
	 // ...
}

Integrating Ice with a GUI

Connections
ZeroC’s Newsletter for the Ice Community

Page � Issue 13, April 2006 Page �Issue 13, April 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page �Issue 13, April 2006 Connections
ZeroC’s Newsletter for the Ice Community

void
OnewayCallQueue::add(const CallPtr& req)
{
	 Lock sync(*this);
	 _req.push_back(req);
	 notify();
}

The implementation is somewhat inefficient because each time add
is called, the thread is woken only to go back to sleep immediately
if diff < 0. We improve on this by saving minEnd in a member
variable of the queue and having add only call notify if Time::
now() >= minEnd.

There are other possible approaches for the flushing scheme.
For example, the application might want to wait for n calls to be
queued before flushing. This can be combined with a timer so that,
once the first batch event is added, the timer is set; the batch is
flushed when the timer expires or once n events have been queued,
whichever happens first.

A Complete Example
We will now modify the Qt client from the previous article to
support the sending of oneway messages. We’ll add a toggle but-
ton that, while depressed, causes oneway messages to be sent at
regular intervals to the server via a oneway call queue.

We’ll need to pass the oneway call queue to the hello dialog
constructor. In addition, we need a new button that can toggle the
sending of oneway events. While the button is depressed, oneway
messages are enqueued at regular intervals. The simplest method
is to use a QTimer for this. We connect the timeout signal of the
timer to a slot in the dialog also called timeout and, for efficien-
cy, we cache the batch oneway proxy:

// C++
class HelloDlg : public QDialog
{
	 Q_OBJECT

public:

	 HelloDlg(const CallQueuePtr&,
		 const OnewayCallQueuePtr&,
		 const HelloPrx&,
		 QWidget *parent = 0);
	 // ...
private slots:
	 void toggleOneway(bool);
	 void timeout();

private:
	 const OnewayCallQueue _onewayQueue;
	 const HelloPrx _helloOnewayBatch;
};

HelloDlg::HelloDlg(
	 const CallQueuePtr& queue,
	 const OnewayCallQueuePtr& onewayQueue,
	 const HelloPrx& hello,
	 QWidget *parent) :
		 QDialog(parent),
		 _queue(queue),
		 _onewayQueue(onewayQueue),
		 _hello(hello),
		 _helloOnewayBatch(
			 HelloPrx::uncheckedCast(
				 hello->ice_batchOneway()))
{
	 QPushButton* toggle =
		 new QPushButton("Send Oneway");
	 toggle->setCheckable(true);
	 connect(toggle, SIGNAL(clicked(bool)),
	 this, SLOT(toggleOneway(bool)));
	 _timer = new QTimer(this);
	 _timer->setInterval(100);
	 connect(_timer, SIGNAL(timeout()),
			 this, SLOT(timeout()));
	 // ...
};

The timer is started and emits the timeout signal every 100ms until
stopped. The implementation of toggleOneway is as follows:

void
HelloDlg::toggleOneway(bool checked)
{
	 if(checked)
	 {
		 _timer->start();
	 }
	 else
	 {
		 _timer->stop();
	 }
}

When toggleOneway is called with a value of true (thus the but-
ton is depressed), the timer is started, and when called with false
(the button un-checked), the timer is stopped. The implementation
of timeout, which is called every time the timer expires, simply
enqueues the next call uses the cached _helloOnewayBatch
proxy:

void
HelloDlg::timeout() {
	 _onewayQueue->add(
		 new SayHelloCall(_helloOnewayBatch));
}

The oneway queue then executes and flushes all batch messages
every second.

That’s it for this issue. Next month’s article will look at a more
elegant solution to the general problem of invoking a method from
a GUI’s main thread without the risk of blocking.

Integrating Ice with a GUI

Connections
ZeroC’s Newsletter for the Ice Community

Page � Issue 13, April 2006 Page �Issue 13, April 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page �Issue 13, April 2006 Connections
ZeroC’s Newsletter for the Ice Community

Ice-E 1.1: What’s New?
Brent Eagles, Senior Software Engineer

Dwayne Boone, Senior Software Engineer

Flexibility, not Contortion—An Alternate Sequence
Mapping
In Ice‑E 1.0 for C++, Slice sequences were mapped to std::
vector. While std::vector is a perfectly valid data type to use,
an application might want to use a different container because it
is more appropriate for the problem at hand. Unfortunately, this
means that if you want to use data in an Ice‑E request that is stored
in another container, you have to create a std::vector instance
of your Slice type and copy the data before making the request.
Not only is such “glue” code a little messy, but you also pay a
performance penalty—the extra copying of data is not free.

In Ice‑E 1.1, by default, sequences still map to std::vector,
but it is possible to change this mapping to a user-defined class
using metadata. Any class can be used as the sequence type as long
as it conforms to the following constraints:

•	 It has a default constructor.
•	 It has a copy constructor.
•	 It has a constructor that takes the initial size of the sequence

as a parameter.
•	 It implements size() to return the current sequence size.
•	 It implements swap() to swap contents with another class of

the same type.
•	 It has an iterator and const_iterator and implements
begin() and end().

•	 It takes care of its own memory management.

In effect, these constraints form a ‘protocol’ for allowable contain-
ers. For those familiar with the STL, this list will look familiar:
the std::list and std::deque templates satisfy these require-
ments.

The Slice syntax for specifying an alternate mapping will be
familiar to C++ users. For example:

// Slice
["cpp:type:std::deque< ::Ice::Byte>"]
	 sequence<byte> ByteSeq;

The [“cpp:type:std::deque< ::Ice::Byte>”] metadata
will cause std::deque to be used for all occurrences of ByteSeq
in your Slice definitions.

You can also define an alternate mapping for specific occur-
rences of a sequence type, such as an operation parameter or the
data member of structure:

// Slice
sequence<byte> ByteSeq;
// Uses the default mapping to std::vector.

struct S
{
	 // This member uses the default mapping.
	 ByteSeq seq1;
	 // Modify the mapping for this data member.
	 ["cpp:type:std::list< ::Ice::Byte>"]
	 ByteSeq seq2;
};

interface I
{
	 // Modify the mapping of the return value
	 //and the parameter.
	 ["cpp:type:list< ::Ice::Byte>"]
	 ByteSeq op(["cpp:type:list< ::Ice::Byte>"]
		 ByteSeq seq);
};

Two additional metadata directives are supported for the input
parameters of an operation, array and range. The array direc-
tive maps a sequence to a pair of pointers to the element type as
[first, last). Consider this example:

// Slice
interface I
{
	 void op(["cpp:array"] ByteSeq seq);
};

The signature of the servant's method is mapped as follows:

// C++
void op(std::pair<const Ice::Byte*,
		 const Ice::Byte*>, ...)

For byte sequences, these pointers refer to memory in the Ice run
time's internal buffers. This avoids the overhead of an extra copy
on the server side and results in a significant advantage in terms of
speed and memory consumption.

The range directive maps a sequence to a pair of const_
iterators that point to the beginning and end of the sequence.
For example:

// Slice
interface I
{
	 void op(["cpp:range"] ByteSeq seq);
};

The signature of the servant's method is mapped as follows:

// C++
void op(std::pair<ByteSeq::const_iterator,
		 ByteSeq::const_iterator>, ...)

The range directive accepts an optional argument specifying an
alternate sequence type, as shown in this example:

Ice-E 1.1: What’s New?

Connections
ZeroC’s Newsletter for the Ice Community

Page � Issue 13, April 2006 Page �Issue 13, April 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page �Issue 13, April 2006 Connections
ZeroC’s Newsletter for the Ice Community

// Slice
interface I
{
	 void op(["cpp:range:std::deque< ::Ice::Byte>"]
			 ByteSeq seq);
};

The signature of the servant's method is mapped as follows:

// C++
void op(std::pair<std::deque<
			 ::Ice::Byte>::const_iterator,
		 std::deque<
			 ::Ice::Byte>::const_iterator>, ...)

With these directives, using Ice‑E with C++ is more natural than
ever. You no longer need to write glue code to deal with the imped-
ance mismatch between your code and an API that uses a type
other than vector for sequences.

A Simple Example
Let’s consider an example of a class of our own that demonstrates
the requirements for the alternate mapping. We’ll explore a simple
encapsulation of a byte array. A class declaration for this might
look as follows:

// C++
class MyByteSeq
{
public:
	 //
	 // Required constructors:
	 // - default
	 // - copy
	 // - initial size
	 //
	 MyByteSeq();
	 MyByteSeq(const MyByteSeq&);
	 MyByteSeq(size_t);
	 ~MyByteSeq();

	 //
	 // Required methods:
	 // - size() that returns current
	 // sequence size
	 // - swap() that swaps the contents with
	 // another class of the same type.
	 //
	 size_t size() const;
	 void swap(MyByteSeq&);

	 //
	 // Required iterators.
	 //
	 typedef Ice::Byte* iterator;
	 typedef Ice::Byte* const_iterator;
	 const_iterator begin() const;
	 const_iterator end() const;

	 //

	 // If you’ve implemented a copy constructor,
	 // you probably want an assignment operator.
	 //
	 MyByteSeq& operator=(const MyByteSeq&);

	 //
	 // Not required, but is a feature of the
class.
	 //
	 bool operator==(const MyByteSeq&) const;

private:

	 size_t _size;
	 Ice::Byte* _data;
};

You can download the implementation of this class from our web
site. Here is how we can use this class in a Slice definition:

// Slice
//
// The cpp:include metadata tells slice2cppe to
// place an include directives in the appropriate
// spots in the generated code.
//
[["cpp:include:MyByteSeq.h"]]
module XFER
{

//
// Tell the generator to use MyByteSeq whereever
// ByteSeq is specified.
//
["cpp:type:MyByteSeq"] sequence<byte> ByteSeq;

interface BufferTransferSession
{
	 //
	 // Sends a byte sequence.
	 //
	 void put(ByteSeq buf);

	 //
	 // Retrieves a byte sequence.
	 //
	 ByteSeq get();
};
};

If you look at the generated code, you will see MyByteSeq being
used where vector<Ice::Byte> would normally appear. For
example, without the metadata, slice2cppe would generate code
that looks like this:

// C++
namespace XFER
{

typedef ::std::vector< ::Ice::Byte> ByteSeq;
...
}

Ice-E 1.1: What’s New?

http://www.zeroc.com/newsletter/issue13/icee11_features.zip

Connections
ZeroC’s Newsletter for the Ice Community

Page 10 Issue 13, April 2006 Page 11Issue 13, April 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page 11Issue 13, April 2006 Connections
ZeroC’s Newsletter for the Ice Community

With the metadata directive, slice2cppe instead generates:

// C++
namespace XFER
{

typedef MyByteSeq ByteSeq;
...
}

The advantage of this becomes clear if you imagine that
MyByteSequence is an existing class that is used repeatedly
throughout your application and you want to start using Ice-E to
introduce distributed capabilities to your system. Consider what
client code using the BufferTransferSession::put() method
might look like without the alternate mapping:

// C++
MyBytesSeq seq = ...;
// ...
vector<::Ice::Byte> vs;
MyByteSeq::const_iterator i;
for(i = seq.begin() ; i != seq.end(); ++i)
{
	 vs.push_back(*i);
}
transfer->put(vs);

Without the alternate mapping, we first have to copy all the bytes
from seq into a vector, just so we can call put; in contrast, with
the alternate mapping, we can call transfer->put(seq)directly,
without having to copy anything.

Similarly, for the server side, without the alternate mapping,
things would also be awkward, especially since MyByteSeq
doesn’t implement much in the way of modifiers:

// C++
void put(const vector<::Ice::Byte>& seq,
		 const Ice::Current&)
{
	 MyByteSeq s(seq.size());
	 MyByteSeq::iterator current = s.begin();
	 vector<::Ice::Byte>::const_iterator i;
	 for(i = seq.begin() ; i != seq.end();
		 ++i)
	 {
		 *current = *i;
		 ++current;
	 }
	 // Start using the application specific
	 // data.
}

With the alternate mapping, we can skip the translation and
immediately use the data.

This example is quite basic and might make controlling
the mapping seem like a simple convenience. However,
for sequences of complex types (or long buffers of simple
types), each additional copy eats CPU and memory (par-

ticularly for copying of complex types, which typically requires
multiple calls to copy constructors).

By the way, in case you are wondering, we’ve decided that this
feature is important enought that we will incorporate it into Ice as
of version 3.1.

Performance Improvements
The middleware community recently threw down the gauntlet
by challenging Ice‑E’s performance. Not being ones to ignore a
challenge (and finding laurels uncomfortable to rest on), we got to
work on making Ice‑E even faster.

No Red Lights, Full Speed Ahead—The Blocking
Concurrency Model
Concurrency comes at a price. Multiple threads mean context
switching and locking overhead. If we need maximum speed at
all costs, the software instead needs to focus on doing one thing at
one time and doing it as fast as possible. The blocking concurrency
model does just that. By avoiding locking and context switching as
much as possible, the blocking concurrency model achieves better
performance.

By default, Ice‑E supports the thread-per-connection concur-
rency model. With this model, the invoking thread sends the data
across the network then blocks; a receiver thread associated with
the connection waits for the reply. Once the reply arrives, the
receiver thread notifies the invoking thread to unblock it. If other
threads invoke an operation while the receiver thread is waiting for
a reply to a previous invocation, those threads join a list of threads
that are waiting for replies, and the receiver thread notifies the
appropriate thread when the reply arrives. (Of course, this does not
apply to oneway requests which do not return replies and therefore
do not use the receiver thread.)

 Ice‑E 1.1 adds an additional concurrency model, the blocking

Ice-E 1.1: What’s New?

Figure 1: Blocking Concurrency Model

Connections
ZeroC’s Newsletter for the Ice Community

Page 10 Issue 13, April 2006 Page 11Issue 13, April 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page 11Issue 13, April 2006 Connections
ZeroC’s Newsletter for the Ice Community

concurrency model. With this model, the calling thread sends the
data across the network and then immediately performs a block-
ing read for the reply itself. (There is no receiver thread.) The
advantage of the blocking model is that fewer steps are necessary
to process a twoway request, which results in a significant speed
increase. You have the option of building the Ice‑E client library
with only the blocking concurrency model enabled. This reduces
the size of the Ice‑E run time because it omits all the code that sup-
ports the thread-per-connection model.

As with most optimizations, the blocking concurrency model
comes with trade-offs. Requests are multiplexed with the thread-
per-connection model: if a server takes a long time respond to one
request, during that time, other requests can be sent by the client
and processed by the server. In other words, a long-running request
does not prevent other requests from completing until the long-
running request completes. With the blocking concurrency model,
requests are completely serialized end-to-end: if the client sends a
request on a connection, no other requests can be sent to the server
over the same connection until the previous request completes.

Another limitation of the blocking model is connections cannot
be used in bidirectional mode. If a server makes a callback to the
client, the callback must be sent over a separate connection. How-
ever, this is not an issue unless you want to use callbacks and the
server cannot make a connection back to the client (for example,
because a firewall disallows incoming connections to the client’s
machine).

Express Route, No Transfers—Zero-Copy for
Simple Types
Allocating and de-allocating memory on the heap is an expensive
operation. Unfortunately, remote procedure calls usually require
several heap allocations and deallocations during marshaling
and unmarshaling. Besides the obvious performance hit, having
multiple copies of same data in memory can be a show stopper in

a memory-constrained environment. For servers that are
implemented on portable or embedded devices, the extra
memory cost can be particularly onerous if the servers need
to service requests concurrently.

Ice‑E 1.1 for C++ has improved performance by imple-
menting an optimization commonly referred to as zero-
copy. Zero-copy removes the memory allocations and copy
operations that are normally performed when processing
an Ice‑E request. The performance gains are particularly
noticeable if an application exchanges many small requests
or processes large buffers.

Unfortunately, zero-copy implementations are sensi-
tive to CPU architectures and compilers. Currently, Ice‑E
supports zero-copy for byte on all platforms. However,
for other primitive types, such as int and short, zero-copy
is supported only for x86 platforms. A future release will
likely add zero-copy to the client side for additional perfor-

mance gains.

New York to LA—Before and After
So what does this all mean? On the face of it, these changes ought
to make Ice‑E faster and lighter than ever before. Unfortunately,
reality doesn’t always meet expectations, so we ran extensive
performance tests (over and over and over) to make sure we stayed
on track and things were indeed getting faster. While we were at
it, we also improved the performance of many other parts of the
Ice‑E code (besides the blocking model and zero-copy) to improve
performance for existing Ice‑E applications.

Remote procedure call performance can be measured in many
ways. Two of the most basic types of measurements are latency
and throughput. Latency is the time it takes for a single request to
get from the sender to the receiver, and for the reply (if any) to be
returned back to the sender. Throughput is a measure of how much
data can be processed in a given period of time. Both latency and
throughput need to be considered because low latency does not
guarantee high throughput, and vice versa. This is obvious when
we consider what contributes to latency and what contributes to
throughput. In a low-latency system, we must keep call overhead
to a minimum, so the number of operations performed per call is as
low as possible. In addition, we need to avoid operations that can
take a variable amount of time, and operations that need to yield
resources to other operations as much as possible. For a high-
throughput system, we obviously need to minimize the number of
operations that are performed during marshaling and unmarshaling,
and access the network as efficiently as possible. We might also
use batch requests, compress data, or take advantage of multiple
processors. Ice‑E strives to find an optimal balance by allowing
you to configure the system for low latency or high throughput,
depending on application requirements.

Ice-E 1.1: What’s New?

Figure 2: Thread-per-connection Concurrency Model

Connections
ZeroC’s Newsletter for the Ice Community

Page 12 Issue 13, April 2006 Page 13Issue 13, April 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page 13Issue 13, April 2006 Connections
ZeroC’s Newsletter for the Ice Community

The following two sections summarize the results of our perfor-
mance tests and explain how each test works. For Windows, we
tested on a Dell Dimension XPS with a 3.2GHz Pentium 4 CPU
with hyper-threading and with 1GB of RAM. For Linux, we tested
on a Dell Dimension with a 3.0GHz Pentium 4 CPU and with
2GB of RAM running Fedora Core 4. (By the way, you don’t have
to take our word for these test results: the data comes from the
latency and throughput demos in the Ice‑E distributions.)

Latency
As mentioned above, latency is the overall time it takes for a re-
quest to complete. We use a simple request with no data to evaluate
latency. Since no data is transferred, latency represents the time it
takes to perform the following general steps:

•	 construct a request
•	 marshal the request
•	 send a buffer containing the marshaled data through a network

interface
•	 read a buffer containing the marshaled data from the network

interface
•	 unmarshal the request
•	 find a servant
•	 dispatch the request
•	 construct a reply
•	 marshal the reply
•	 send the reply containing the marshaled data through a net-

work interface
•	 read the reply from the network interface
•	 match the reply to a request
•	 return from the call

Ice‑E 1.1 has greatly improved latency, particularly on Linux with
a net improvement of 62%.

Table 1: Twoway Request

Product Windows Linux
μs/call change μs/call change

IceE 1.0.0 111.6 80.9
IceE 1.1.0 92.8 16.9% 61.9 44.5%

IceE 1.1.0 blocking 80.7 27.7% 46.2 58.6%

Oneway requests have similarly improved:

Table 2: Oneway Requests

Product Windows Linux
μs/call change μs/call change

IceE 1.0.0 26.1 14.5
IceE 1.1.0 14.7 43.9% 8.8 39.1%

IceE 1.1.0 blocking 14.1 45.9% 8.8 39.1%

Table 3: Oneway Batch Requests

Product Windows Linux
μs/call change μs/call change

IceE 1.0.0 13.807 4.055
IceE 1.1.0 4.275 69% 2.355 41.9%

IceE 1.1.0 blocking 4.286 69% 2.363 41.7%

For oneway requests, there is little or no difference between the
blocking and thread-per-connection models because Ice‑E does not
wait for replies to oneway requests, so the blocking concurrency
model offers no advantage.

A frequently asked question for middleware is how it compares
to using raw sockets. Since we wanted to know where we stood,
we performed a latency-oriented comparison with raw sockets as
well:

Table 4: Raw Socket vs. IceE Blocking

Product Windows Linux
μs/call change μs/call change

Raw Socket 55.8 34.0
IceE 1.1.0 85.8 53.8% 46.6 37.0%

Depending on the platform, Ice‑E is approximately 37% or 54 %
slower than raw sockets when testing for latency. This might seem
like quite a gap, but consider what these numbers actually mean.
With Windows, a simple read/write of a few bytes of data over a
socket takes 55.8 μsec. Ice‑E obviously cannot do better than that,
but it does take at least that long for Ice‑E to send the data for a
request. So, if we normalize to the baseline of raw sockets, it takes
30 μsec for an Ice‑E request on Windows and 12.2 μsec on Linux.
In other words, only 35% of the latency figure for Windows, and
only 27% for Linux, are attributable to Ice‑E. Considering how
much extra work Ice‑E does for you, that’s quite a good deal.

Throughput
We compiled two groups of throughput tests, the normal send test
and the receive test. In the case of the send test, most of the data

Ice-E 1.1: What’s New?

Connections
ZeroC’s Newsletter for the Ice Community

Page 12 Issue 13, April 2006 Page 13Issue 13, April 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page 13Issue 13, April 2006 Connections
ZeroC’s Newsletter for the Ice Community

transfer occurs during the sending of the request to the server. In
the receive test, the majority of data is transferred in the reply.
These tests help us examine the effect of removing the receiver
thread in the blocking concurrency model when receiving data and
to compare it with the time it takes for the calling thread to send
the data. In almost all cases, the difference between the blocking
concurrency and thread-per-connection models is quite small. This
isn’t too surprising since these are end-to-end tests, so the cost of
the server side handling the request is an overwhelming factor. In
other words, a percentage point or two with the blocking concur-
rency model is still significant. More important is that the lack of
the receiver thread in the receive tests doesn’t cost anything. On
Linux, performance improvements tend to be more dramatic be-
cause the Linux loopback adapter is implemented more efficiently
than the one for Windows.

The byte throughput test shows good results, particularly on
Linux. Zero-copy contributes to the performance gains. Each call
sends or receives a byte sequence containing 500,000 elements.

Table 5: Byte Send

Product Windows Linux
ms/call change ms/call change

IceE 1.0.0 5.6563 4.6140
IceE 1.1.0 4.9427 12.6% 2.5953 43.8%

IceE 1.1.0 blocking 4.8387 14.5% 2.5256 45.3%

Table 6: Byte Receive

Product Windows Linux
ms/call change ms/call change

IceE 1.0.0 6.5470 7.8279
IceE 1.1.0 6.4323 1.8% 6.7030 14.4%

IceE 1.1.0 blocking 6.4113 2.1% 6.6721 14.8%

String handling in Ice‑E is partly affected by the quality of the
compiler’s STL implementation. Ice‑E shows a nice performance
improvement when sending and receiving sequences of strings.
Each sequence is 50,000 copies of the string “hello”.

Table 7: String Sequence Send

Product Windows Linux
ms/call change ms/call change

IceE 1.0.0 28.1300 35.7704
IceE 1.1.0 27.4793 2.3% 32.4171 9.4%

IceE 1.1.0 blocking 26.8073 4.7% 32.2799 9.8%

Table 8: String Sequence Receive

Product Windows Linux
ms/call change ms/call change

IceE 1.0.0 53.7500 54.0287
IceE 1.1.0 52.1403 3.0% 50.6490 6.3%

IceE 1.1.0 blocking 52.1613 3.0% 50.1119 7.2%

The structure sequence throughput test illustrates improvement in
marshalling and unmarshalling performance. Each sequence con-
tains 50,000 elements of the following structure definition:

//Slice
struct StringDouble
{
	 string s;
	 double d;
};

Each struct is initialized with the string “hello” and 3.14 for the
double value.

Table 9: Struct Sequence Send

Product Windows Linux
ms/call change ms/call change

IceE 1.0.0 36.2500 42.2178
IceE 1.1.0 34.1043 5.9% 39.5455 6.3%

IceE 1.1.0 blocking 33.9530 6.3% 39.4879 6.5%

Table 10: Struct Sequence Receive

Product Windows Linux
ms/call change ms/call change

IceE 1.0.0 64.1350 66.1004
IceE 1.1.0 63.7500 0.6% 60.9475 7.8%

IceE 1.1.0 blocking 64.3540 -0.3% 61.6574 6.7%

Overall, we get a range of performance improvement from 7% to
nearly 70%, depending on the platform and test. Some tests show
no improvement, which is simply an indication that we haven’t
done any work in that area yet—please feel free to suggest any ad-
ditional performance tests in our user forum!

The improvements in Ice‑E provide better programming conve-
nience, reduced memory footprint, and substantial gains in perfor-
mance. In the future, we’ll be using our hard-won knowledge to
find ways to speed things up even more. As Ice‑E finds its way into
more and more real-world applications, we will no doubt discover
use cases that will spur more innovative features.

Ice-E 1.1: What’s New?

http://www.zeroc.com/vbulletin

Connections
ZeroC’s Newsletter for the Ice Community

Page 14 Issue 13, April 2006 Page 15Issue 13, April 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page 15Issue 13, April 2006 Connections
ZeroC’s Newsletter for the Ice Community

FAQ Corner

In each issue of our newsletter, we present a few frequently-asked
questions about Ice. The questions and answers are taken from our
support forum at http://www.zeroc.com/vbulletin/ and deal with
specific problems that developers tend to encounter, and for which
the answer may not be readily apparent from reading the documen-
tation. We hope that you will find the hints and explanations in this
section useful.

Q: Why can’t my C++ servant class derive from
IceUtil::Thread?

C++ servant classes derive from generated skeleton classes. These
skeleton classes use IceInternal::GCShared as a base class.
That class provides reference counting and garbage collection
(automatic detection of cyclic dependencies). On the other hand,
IceUtil::Thread derives from IceUtil::Shared, which only
provides reference counting, but no garbage collection.

IceInternal::GCShared is an internal class that only works
in conjunction with the generated skeleton class. On the other
hand, IceUtil::Shared works with any class, including classes
written by Ice users. Because of the differences between these two
base classes, it is not possible to derive a C++ servant class from
IceUtil::Thread.

Instead of deriving a servant class from IceUtil::Thread,
you can use a helper class that derives from IceUtil::Thread
and keep that class as a data member in your servant class. The
helper class then delegates to a run method of your servant class.
Here is an example:

// Slice
module M
{
 interface ActiveObject
 {
 };
};

// C++
class ActiveObjectI;
typedef IceUtil::Handle<ActiveObjectI>
ActiveObjectIPtr;

class ActiveObjectI : public M:ActiveObject
{
public:

 ActiveObjectI() :
 _activeObjectThread(
			 new ActiveObjectThread(this))
 {
 }

 void start()
 {
 _activeObjectThread->start();
 }

 void run()
 {
 // Your code goes here...
 }

private:

 class ActiveObjectThread :
		 public IceUtil::Thread
 {
 public:

 ActiveObjectThread(
		 const ActiveObjectIPtr& activeObject) :
 _activeObject(activeObject)
 {
 }

 virtual void run()
 {
 _activeObject->run();

			 // Break cyclic dependency.
 _activeObject = 0;
 }

 private:

 ActiveObjectIPtr _activeObject;
 };

 const ThreadPtr _activeObjectThread;
};

Q: How do I transfer a file with Ice?

The easiest approach is to simply transfer the entire file in a single
RPC. Here are the Slice definitions for a simple file store:

// Slice
sequence<byte> ByteSeq;

interface FileStore
{
 ByteSeq get(string name);
 void put(string name, ByteSeq bytes);
};

This interface allows clients to read and update the contents of
remote files by specifying a file name. Quite often, this approach
to file transfer is entirely adequate. Unless the files get quite large
(in the tens of megabytes), they can be transferred in a single RPC
without problems. If you want to transfer files larger than a mega-

FAQ Corner

http://www.zeroc.com/vbulletin/

Connections
ZeroC’s Newsletter for the Ice Community

Page 14 Issue 13, April 2006 Page 15Issue 13, April 2006 Connections
ZeroC’s Newsletter for the Ice Community

Page 15Issue 13, April 2006 Connections
ZeroC’s Newsletter for the Ice Community

byte, you will need to increase the setting of the
Ice.MessageSizeMax property though. By default, this property
limits the maximum size of Ice messages to 1MB so, to transfer
larger files, you will need to increase the default setting. (See also
the FAQ in Issue 5 of Connections, which discusses this property.)

If you need to transfer files that are large, you will likely need
to use a different approach. The reason is that, once a single RPC
transfers too much data, your machine is likely to start thrashing
because all of the data for the RPC is buffered in memory before it
is made available to the receiving end. In addition (unless you use
zero-copy, as explained by Brent Eagles and Dwayne Boone in this
issue), during unmarshaling, the Ice run time temporarily requires
roughly twice the memory for the data in a request: once to store
the data in a transport buffer, and once to make it available to the
application as a byte sequence (such as a vector in C++ or a collec-
tion in C#).

For larger files, there are various ways to tackle the problem.
One of the simplest and most effective is to read the file in chunks
and to have the interface mimic the UNIX read and write system
calls:

interface FileStore
{
 ByteSeq read(string name, int offset,
			 int num);
 void write(string name, int offset,
			 ByteSeq bytes);
};

The read operation requests a number of bytes starting at the
specified offset. The operation returns either the number of bytes
that were requested, or a sequence containing fewer bytes. In the
latter case, the server may have limited the number of bytes it
returned to its setting of MessageSizeMax (which may be smaller
than the client’s), so reading fewer bytes than requested does not
indicate end-of-file (as it does in UNIX). Instead, the client must
keep reading until it receives an empty sequence. To retrieve a file
in chunks, the client simply keeps reading some number of bytes,
starting at offset zero, and adds the number of bytes in the returned
sequence to the offset for the next call to read, until read returns
an empty sequence.

The write operation writes the byte sequence starting at the
specified offset. If the specified number bytes cannot be trans-
ferred because the client’s setting of MessageSizeMax is too low,
the operation raises a MemoryLimitExeption; if the operation
fails because the server’s setting of MessageSizeMax is too
low, the operation raises an UnknownException. If you prefer
more descriptive exceptions, you can add an additional operation
that allows the client to obtain the setting of the largest sequence
that a server can handle (which will be smaller than the server’s
MessageSizeMax setting), and make the server throw an excep-
tion such as SizeTooLarge if the client attempts to transfer too
many bytes at once.

Finally, for high throughput applications, you can use a more so-

phisticated scheme, such as the one used by IcePatch2: instead of
transferring one chunk of a file at a time, IcePatch2 uses concurrent
calls to avoid idle time while chunks are in transfer. However, that
approach is beyond the scope of this FAQ—you can have a look at
the IcePatch2 source code if you are interested in seeing how this
approach works.

FAQ Corner

http://www.zeroc.com/newsletter/issue5.pdf

	Integrating Ice with a GUI: Part II
	Ice-E 1.1: What’s New?
	FAQ Corner

